Loading…
Measurable Taylor's Theorem: An Elementary Proof
The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Viggiano, Gianluca |
description | The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811357849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811357849</sourcerecordid><originalsourceid>FETCH-proquest_journals_28113578493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8E1NLC4tSkzKSVUISazMyS9SL1YIyUjNL0rNtVJwzFNwzUnNTc0rSSyqVAgoys9P42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ0NjU3MLE0tj4lQBADHlMqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811357849</pqid></control><display><type>article</type><title>Measurable Taylor's Theorem: An Elementary Proof</title><source>Publicly Available Content Database</source><creator>Viggiano, Gianluca</creator><creatorcontrib>Viggiano, Gianluca</creatorcontrib><description>The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Independent variables ; Taylor series ; Theorem proving ; Theorems</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2811357849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Viggiano, Gianluca</creatorcontrib><title>Measurable Taylor's Theorem: An Elementary Proof</title><title>arXiv.org</title><description>The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.</description><subject>Independent variables</subject><subject>Taylor series</subject><subject>Theorem proving</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8E1NLC4tSkzKSVUISazMyS9SL1YIyUjNL0rNtVJwzFNwzUnNTc0rSSyqVAgoys9P42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ0NjU3MLE0tj4lQBADHlMqQ</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Viggiano, Gianluca</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230508</creationdate><title>Measurable Taylor's Theorem: An Elementary Proof</title><author>Viggiano, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28113578493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Independent variables</topic><topic>Taylor series</topic><topic>Theorem proving</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Viggiano, Gianluca</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viggiano, Gianluca</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measurable Taylor's Theorem: An Elementary Proof</atitle><jtitle>arXiv.org</jtitle><date>2023-05-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2811357849 |
source | Publicly Available Content Database |
subjects | Independent variables Taylor series Theorem proving Theorems |
title | Measurable Taylor's Theorem: An Elementary Proof |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measurable%20Taylor's%20Theorem:%20An%20Elementary%20Proof&rft.jtitle=arXiv.org&rft.au=Viggiano,%20Gianluca&rft.date=2023-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811357849%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28113578493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811357849&rft_id=info:pmid/&rfr_iscdi=true |