Loading…

Measurable Taylor's Theorem: An Elementary Proof

The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-05
Main Author: Viggiano, Gianluca
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Viggiano, Gianluca
description The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2811357849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811357849</sourcerecordid><originalsourceid>FETCH-proquest_journals_28113578493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8E1NLC4tSkzKSVUISazMyS9SL1YIyUjNL0rNtVJwzFNwzUnNTc0rSSyqVAgoys9P42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ0NjU3MLE0tj4lQBADHlMqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811357849</pqid></control><display><type>article</type><title>Measurable Taylor's Theorem: An Elementary Proof</title><source>Publicly Available Content Database</source><creator>Viggiano, Gianluca</creator><creatorcontrib>Viggiano, Gianluca</creatorcontrib><description>The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Independent variables ; Taylor series ; Theorem proving ; Theorems</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2811357849?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Viggiano, Gianluca</creatorcontrib><title>Measurable Taylor's Theorem: An Elementary Proof</title><title>arXiv.org</title><description>The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.</description><subject>Independent variables</subject><subject>Taylor series</subject><subject>Theorem proving</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8E1NLC4tSkzKSVUISazMyS9SL1YIyUjNL0rNtVJwzFNwzUnNTc0rSSyqVAgoys9P42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ0NjU3MLE0tj4lQBADHlMqQ</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Viggiano, Gianluca</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230508</creationdate><title>Measurable Taylor's Theorem: An Elementary Proof</title><author>Viggiano, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28113578493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Independent variables</topic><topic>Taylor series</topic><topic>Theorem proving</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Viggiano, Gianluca</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viggiano, Gianluca</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measurable Taylor's Theorem: An Elementary Proof</atitle><jtitle>arXiv.org</jtitle><date>2023-05-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor's classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor's theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2811357849
source Publicly Available Content Database
subjects Independent variables
Taylor series
Theorem proving
Theorems
title Measurable Taylor's Theorem: An Elementary Proof
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measurable%20Taylor's%20Theorem:%20An%20Elementary%20Proof&rft.jtitle=arXiv.org&rft.au=Viggiano,%20Gianluca&rft.date=2023-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2811357849%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28113578493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811357849&rft_id=info:pmid/&rfr_iscdi=true