Loading…
Magnetic field-induced weak-to-strong-link transformation in patterned superconducting films
Ubiquitous in most superconducting materials and a common result of nanofabrication processes, weak-links are known for their limiting effects on the transport of electric currents. Still, they are at the root of key features of superconducting technology. By performing quantitative magneto-optical...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ubiquitous in most superconducting materials and a common result of nanofabrication processes, weak-links are known for their limiting effects on the transport of electric currents. Still, they are at the root of key features of superconducting technology. By performing quantitative magneto-optical imaging experiments and thermomagnetic model simulations, we correlate the existence of local maxima in the magnetization loops of FIB-patterned Nb films to a magnetic field-induced weak-to-strong-link transformation increasing their critical current. This phenomenon arises from the nanoscale interaction between quantized magnetic flux lines and FIB-induced modifications of the device microstructure. Under an ac drive field, this leads to a rectified vortex motion along the weak-link. The reported tunable effect can be exploited in the development of new superconducting electronic devices, such as flux pumps and valves, to attenuate or amplify the supercurrent through a circuit element, and as a strategy to enhance the critical current in weak-link-bearing devices. |
---|---|
ISSN: | 2331-8422 |