Loading…

Hybrid hyperinterpolation over general regions

We present an \(\ell^2_2+\ell_1\)-regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients app...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-07
Main Authors: An, Congpei, Jiashu Ran, Sommariva, Alvise
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator An, Congpei
Jiashu Ran
Sommariva, Alvise
description We present an \(\ell^2_2+\ell_1\)-regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are chosen well. We derive \(L_2\) errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2812249189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812249189</sourcerecordid><originalsourceid>FETCH-proquest_journals_28122491893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ86hMKspMUcioLEgtyswrSS0qyM9JLMnMz1PIL0stUkhPzUstSsxRKEpNB4oV8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGFoZGRiaWhhaUxcaoAVy8zMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812249189</pqid></control><display><type>article</type><title>Hybrid hyperinterpolation over general regions</title><source>Publicly Available Content Database</source><creator>An, Congpei ; Jiashu Ran ; Sommariva, Alvise</creator><creatorcontrib>An, Congpei ; Jiashu Ran ; Sommariva, Alvise</creatorcontrib><description>We present an \(\ell^2_2+\ell_1\)-regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are chosen well. We derive \(L_2\) errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Coefficients ; Continuity (mathematics) ; Disks ; Errors ; Operators (mathematics) ; Parameters ; Quadratures ; Regularization</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2812249189?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Jiashu Ran</creatorcontrib><creatorcontrib>Sommariva, Alvise</creatorcontrib><title>Hybrid hyperinterpolation over general regions</title><title>arXiv.org</title><description>We present an \(\ell^2_2+\ell_1\)-regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are chosen well. We derive \(L_2\) errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Continuity (mathematics)</subject><subject>Disks</subject><subject>Errors</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Quadratures</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ86hMKspMUcioLEgtyswrSS0qyM9JLMnMz1PIL0stUkhPzUstSsxRKEpNB4oV8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGFoZGRiaWhhaUxcaoAVy8zMg</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>An, Congpei</creator><creator>Jiashu Ran</creator><creator>Sommariva, Alvise</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240704</creationdate><title>Hybrid hyperinterpolation over general regions</title><author>An, Congpei ; Jiashu Ran ; Sommariva, Alvise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28122491893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Continuity (mathematics)</topic><topic>Disks</topic><topic>Errors</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Quadratures</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>An, Congpei</creatorcontrib><creatorcontrib>Jiashu Ran</creatorcontrib><creatorcontrib>Sommariva, Alvise</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Congpei</au><au>Jiashu Ran</au><au>Sommariva, Alvise</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Hybrid hyperinterpolation over general regions</atitle><jtitle>arXiv.org</jtitle><date>2024-07-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present an \(\ell^2_2+\ell_1\)-regularized discrete least squares approximation over general regions under assumptions of hyperinterpolation, named hybrid hyperinterpolation. Hybrid hyperinterpolation, using a soft thresholding operator and a filter function to shrink the Fourier coefficients approximated by a high-order quadrature rule of a given continuous function with respect to some orthonormal basis, is a combination of Lasso and filtered hyperinterpolations. Hybrid hyperinterpolation inherits features of them to deal with noisy data once the regularization parameter and the filter function are chosen well. We derive \(L_2\) errors in theoretical analysis for hybrid hyperinterpolation to approximate continuous functions with noise data on sampling points. Numerical examples illustrate the theoretical results and show that well chosen regularization parameters can enhance the approximation quality over the unit-sphere and the union of disks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2812249189
source Publicly Available Content Database
subjects Approximation
Coefficients
Continuity (mathematics)
Disks
Errors
Operators (mathematics)
Parameters
Quadratures
Regularization
title Hybrid hyperinterpolation over general regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Hybrid%20hyperinterpolation%20over%20general%20regions&rft.jtitle=arXiv.org&rft.au=An,%20Congpei&rft.date=2024-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2812249189%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28122491893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812249189&rft_id=info:pmid/&rfr_iscdi=true