Loading…
Neural architecture search for energy-efficient always-on audio machine learning
Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for net...
Saved in:
Published in: | Neural computing & applications 2023-06, Vol.35 (16), p.12133-12144 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3 |
container_end_page | 12144 |
container_issue | 16 |
container_start_page | 12133 |
container_title | Neural computing & applications |
container_volume | 35 |
creator | Speckhard, Daniel T. Misiunas, Karolis Perel, Sagi Zhu, Tenghui Carlile, Simon Slaney, Malcolm |
description | Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy. |
doi_str_mv | 10.1007/s00521-023-08345-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812263865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812263865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0mTToyx-waIe9Byy7WTt0k3XpEX6781awZunYZj3mRkeQi45XHOAxU0CUIIzEJKBkYVi4xGZ8UJKJkGZYzKDsshjXchTcpbSFgAKbdSMvD7jEF1LXaw-mh6rfohIEx5a6rtIMWDcjAy9b6oGQ09d--XGxLpA3VA3Hd25DAakbWZCEzbn5MS7NuHFb52T9_u7t-UjW708PC1vV6ySWvbMQymNMnwh116VoiqU1gJ8xRdQy9orhFLUvpYcufLeADqtlK914fLrZl3LObma9u5j9zlg6u22G2LIJ60wXAgtjVY5JaZUFbuUInq7j83OxdFysAdzdjJnszn7Y86OGZITlHI4bDD-rf6H-gaqGXHO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812263865</pqid></control><display><type>article</type><title>Neural architecture search for energy-efficient always-on audio machine learning</title><source>Springer Nature</source><creator>Speckhard, Daniel T. ; Misiunas, Karolis ; Perel, Sagi ; Zhu, Tenghui ; Carlile, Simon ; Slaney, Malcolm</creator><creatorcontrib>Speckhard, Daniel T. ; Misiunas, Karolis ; Perel, Sagi ; Zhu, Tenghui ; Carlile, Simon ; Slaney, Malcolm</creatorcontrib><description>Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08345-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer architecture ; Computer Science ; Data Mining and Knowledge Discovery ; Edge computing ; Energy consumption ; Energy efficiency ; Hardware ; Image Processing and Computer Vision ; Machine learning ; Mobile computing ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Search methods ; Sound filters</subject><ispartof>Neural computing & applications, 2023-06, Vol.35 (16), p.12133-12144</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</citedby><cites>FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</cites><orcidid>0000-0002-9849-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Speckhard, Daniel T.</creatorcontrib><creatorcontrib>Misiunas, Karolis</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Zhu, Tenghui</creatorcontrib><creatorcontrib>Carlile, Simon</creatorcontrib><creatorcontrib>Slaney, Malcolm</creatorcontrib><title>Neural architecture search for energy-efficient always-on audio machine learning</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Hardware</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Search methods</subject><subject>Sound filters</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0mTToyx-waIe9Byy7WTt0k3XpEX6781awZunYZj3mRkeQi45XHOAxU0CUIIzEJKBkYVi4xGZ8UJKJkGZYzKDsshjXchTcpbSFgAKbdSMvD7jEF1LXaw-mh6rfohIEx5a6rtIMWDcjAy9b6oGQ09d--XGxLpA3VA3Hd25DAakbWZCEzbn5MS7NuHFb52T9_u7t-UjW708PC1vV6ySWvbMQymNMnwh116VoiqU1gJ8xRdQy9orhFLUvpYcufLeADqtlK914fLrZl3LObma9u5j9zlg6u22G2LIJ60wXAgtjVY5JaZUFbuUInq7j83OxdFysAdzdjJnszn7Y86OGZITlHI4bDD-rf6H-gaqGXHO</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Speckhard, Daniel T.</creator><creator>Misiunas, Karolis</creator><creator>Perel, Sagi</creator><creator>Zhu, Tenghui</creator><creator>Carlile, Simon</creator><creator>Slaney, Malcolm</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9849-0022</orcidid></search><sort><creationdate>20230601</creationdate><title>Neural architecture search for energy-efficient always-on audio machine learning</title><author>Speckhard, Daniel T. ; Misiunas, Karolis ; Perel, Sagi ; Zhu, Tenghui ; Carlile, Simon ; Slaney, Malcolm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Hardware</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Search methods</topic><topic>Sound filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speckhard, Daniel T.</creatorcontrib><creatorcontrib>Misiunas, Karolis</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Zhu, Tenghui</creatorcontrib><creatorcontrib>Carlile, Simon</creatorcontrib><creatorcontrib>Slaney, Malcolm</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speckhard, Daniel T.</au><au>Misiunas, Karolis</au><au>Perel, Sagi</au><au>Zhu, Tenghui</au><au>Carlile, Simon</au><au>Slaney, Malcolm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural architecture search for energy-efficient always-on audio machine learning</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>16</issue><spage>12133</spage><epage>12144</epage><pages>12133-12144</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08345-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9849-0022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2023-06, Vol.35 (16), p.12133-12144 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2812263865 |
source | Springer Nature |
subjects | Accuracy Artificial Intelligence Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer architecture Computer Science Data Mining and Knowledge Discovery Edge computing Energy consumption Energy efficiency Hardware Image Processing and Computer Vision Machine learning Mobile computing Neural networks Original Article Probability and Statistics in Computer Science Search methods Sound filters |
title | Neural architecture search for energy-efficient always-on audio machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20architecture%20search%20for%20energy-efficient%20always-on%20audio%20machine%20learning&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Speckhard,%20Daniel%20T.&rft.date=2023-06-01&rft.volume=35&rft.issue=16&rft.spage=12133&rft.epage=12144&rft.pages=12133-12144&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08345-y&rft_dat=%3Cproquest_cross%3E2812263865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812263865&rft_id=info:pmid/&rfr_iscdi=true |