Loading…

Neural architecture search for energy-efficient always-on audio machine learning

Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for net...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2023-06, Vol.35 (16), p.12133-12144
Main Authors: Speckhard, Daniel T., Misiunas, Karolis, Perel, Sagi, Zhu, Tenghui, Carlile, Simon, Slaney, Malcolm
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3
cites cdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3
container_end_page 12144
container_issue 16
container_start_page 12133
container_title Neural computing & applications
container_volume 35
creator Speckhard, Daniel T.
Misiunas, Karolis
Perel, Sagi
Zhu, Tenghui
Carlile, Simon
Slaney, Malcolm
description Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.
doi_str_mv 10.1007/s00521-023-08345-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812263865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812263865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0mTToyx-waIe9Byy7WTt0k3XpEX6781awZunYZj3mRkeQi45XHOAxU0CUIIzEJKBkYVi4xGZ8UJKJkGZYzKDsshjXchTcpbSFgAKbdSMvD7jEF1LXaw-mh6rfohIEx5a6rtIMWDcjAy9b6oGQ09d--XGxLpA3VA3Hd25DAakbWZCEzbn5MS7NuHFb52T9_u7t-UjW708PC1vV6ySWvbMQymNMnwh116VoiqU1gJ8xRdQy9orhFLUvpYcufLeADqtlK914fLrZl3LObma9u5j9zlg6u22G2LIJ60wXAgtjVY5JaZUFbuUInq7j83OxdFysAdzdjJnszn7Y86OGZITlHI4bDD-rf6H-gaqGXHO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812263865</pqid></control><display><type>article</type><title>Neural architecture search for energy-efficient always-on audio machine learning</title><source>Springer Nature</source><creator>Speckhard, Daniel T. ; Misiunas, Karolis ; Perel, Sagi ; Zhu, Tenghui ; Carlile, Simon ; Slaney, Malcolm</creator><creatorcontrib>Speckhard, Daniel T. ; Misiunas, Karolis ; Perel, Sagi ; Zhu, Tenghui ; Carlile, Simon ; Slaney, Malcolm</creatorcontrib><description>Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08345-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer architecture ; Computer Science ; Data Mining and Knowledge Discovery ; Edge computing ; Energy consumption ; Energy efficiency ; Hardware ; Image Processing and Computer Vision ; Machine learning ; Mobile computing ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Search methods ; Sound filters</subject><ispartof>Neural computing &amp; applications, 2023-06, Vol.35 (16), p.12133-12144</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</citedby><cites>FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</cites><orcidid>0000-0002-9849-0022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Speckhard, Daniel T.</creatorcontrib><creatorcontrib>Misiunas, Karolis</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Zhu, Tenghui</creatorcontrib><creatorcontrib>Carlile, Simon</creatorcontrib><creatorcontrib>Slaney, Malcolm</creatorcontrib><title>Neural architecture search for energy-efficient always-on audio machine learning</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Hardware</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Search methods</subject><subject>Sound filters</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0mTToyx-waIe9Byy7WTt0k3XpEX6781awZunYZj3mRkeQi45XHOAxU0CUIIzEJKBkYVi4xGZ8UJKJkGZYzKDsshjXchTcpbSFgAKbdSMvD7jEF1LXaw-mh6rfohIEx5a6rtIMWDcjAy9b6oGQ09d--XGxLpA3VA3Hd25DAakbWZCEzbn5MS7NuHFb52T9_u7t-UjW708PC1vV6ySWvbMQymNMnwh116VoiqU1gJ8xRdQy9orhFLUvpYcufLeADqtlK914fLrZl3LObma9u5j9zlg6u22G2LIJ60wXAgtjVY5JaZUFbuUInq7j83OxdFysAdzdjJnszn7Y86OGZITlHI4bDD-rf6H-gaqGXHO</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Speckhard, Daniel T.</creator><creator>Misiunas, Karolis</creator><creator>Perel, Sagi</creator><creator>Zhu, Tenghui</creator><creator>Carlile, Simon</creator><creator>Slaney, Malcolm</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9849-0022</orcidid></search><sort><creationdate>20230601</creationdate><title>Neural architecture search for energy-efficient always-on audio machine learning</title><author>Speckhard, Daniel T. ; Misiunas, Karolis ; Perel, Sagi ; Zhu, Tenghui ; Carlile, Simon ; Slaney, Malcolm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Hardware</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Search methods</topic><topic>Sound filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Speckhard, Daniel T.</creatorcontrib><creatorcontrib>Misiunas, Karolis</creatorcontrib><creatorcontrib>Perel, Sagi</creatorcontrib><creatorcontrib>Zhu, Tenghui</creatorcontrib><creatorcontrib>Carlile, Simon</creatorcontrib><creatorcontrib>Slaney, Malcolm</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Speckhard, Daniel T.</au><au>Misiunas, Karolis</au><au>Perel, Sagi</au><au>Zhu, Tenghui</au><au>Carlile, Simon</au><au>Slaney, Malcolm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural architecture search for energy-efficient always-on audio machine learning</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>35</volume><issue>16</issue><spage>12133</spage><epage>12144</epage><pages>12133-12144</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Mobile and edge computing devices for always-on classification tasks require energy-efficient neural network architectures. In this paper we present several changes to neural architecture searches that improve the chance of success in practical situations. Our search simultaneously optimizes for network accuracy, energy efficiency and memory usage. We benchmark the performance of our search on real hardware, but since running thousands of tests with real hardware is difficult, we use a random forest model to roughly predict the energy usage of a candidate network. We present a search strategy that uses both Bayesian and regularized evolutionary search with particle swarms, and employs early stopping to reduce the computational burden. Our search, evaluated on a sound event classification dataset based upon AudioSet, results in an order of magnitude less energy per inference and a much smaller memory footprint than our baseline MobileNetV1/V2 implementations while slightly improving task accuracy. We also demonstrate how combining a 2D spectrogram with a convolution with many filters causes a computational bottleneck for audio classification and that alternative approaches reduce the computational burden but sacrifice task accuracy.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08345-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9849-0022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023-06, Vol.35 (16), p.12133-12144
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2812263865
source Springer Nature
subjects Accuracy
Artificial Intelligence
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer architecture
Computer Science
Data Mining and Knowledge Discovery
Edge computing
Energy consumption
Energy efficiency
Hardware
Image Processing and Computer Vision
Machine learning
Mobile computing
Neural networks
Original Article
Probability and Statistics in Computer Science
Search methods
Sound filters
title Neural architecture search for energy-efficient always-on audio machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20architecture%20search%20for%20energy-efficient%20always-on%20audio%20machine%20learning&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Speckhard,%20Daniel%20T.&rft.date=2023-06-01&rft.volume=35&rft.issue=16&rft.spage=12133&rft.epage=12144&rft.pages=12133-12144&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08345-y&rft_dat=%3Cproquest_cross%3E2812263865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f093858173bf592c456620fc170d3df5e092dfd31e15ff80ea655fd64a0008bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812263865&rft_id=info:pmid/&rfr_iscdi=true