Loading…

Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review

The global shift from a fossil fuel-based to an electrical-based society is commonly viewed as an ecological improvement. However, the electrical power industry is a major source of carbon dioxide emissions, and incorporating renewable energy can still negatively impact the environment. Despite risi...

Full description

Saved in:
Bibliographic Details
Published in:Environmental chemistry letters 2023-06, Vol.21 (3), p.1381-1418
Main Authors: Farghali, Mohamed, Osman, Ahmed I., Chen, Zhonghao, Abdelhaleem, Amal, Ihara, Ikko, Mohamed, Israa M. A., Yap, Pow-Seng, Rooney, David W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The global shift from a fossil fuel-based to an electrical-based society is commonly viewed as an ecological improvement. However, the electrical power industry is a major source of carbon dioxide emissions, and incorporating renewable energy can still negatively impact the environment. Despite rising research in renewable energy, the impact of renewable energy consumption on the environment is poorly known. Here, we review the integration of renewable energies into the electricity sector from social, environmental, and economic perspectives. We found that implementing solar photovoltaic, battery storage, wind, hydropower, and bioenergy can provide 504,000 jobs in 2030 and 4.18 million jobs in 2050. For desalinization, photovoltaic/wind/battery storage systems supported by a diesel generator can reduce the cost of water production by 69% and adverse environmental effects by 90%, compared to full fossil fuel systems. The potential of carbon emission reduction increases with the percentage of renewable energy sources utilized. The photovoltaic/wind/hydroelectric system is the most effective in addressing climate change, producing a 2.11–5.46% increase in power generation and a 3.74–71.61% guarantee in share ratios. Compared to single energy systems, hybrid energy systems are more reliable and better equipped to withstand the impacts of climate change on the power supply.
ISSN:1610-3653
1610-3661
DOI:10.1007/s10311-023-01587-1