Loading…
Dynamic stabilization for a cascaded beam PDE–ODE system with boundary disturbance
We are concerned with the dynamic stabilization for a cascaded Euler–Bernoulli beam (EBB) partial differential equation (PDE)–ordinary differential equation (ODE) system subject to boundary control and matched internal uncertainty and external disturbance. State feedback stabilization of such system...
Saved in:
Published in: | Mathematical methods in the applied sciences 2023-06, Vol.46 (9), p.10167-10185 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733 |
---|---|
cites | cdi_FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733 |
container_end_page | 10185 |
container_issue | 9 |
container_start_page | 10167 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Mei, Zhan‐Dong |
description | We are concerned with the dynamic stabilization for a cascaded Euler–Bernoulli beam (EBB) partial differential equation (PDE)–ordinary differential equation (ODE) system subject to boundary control and matched internal uncertainty and external disturbance. State feedback stabilization of such system without disturbance has been recently discussed by X.H. Wu, H. Feng (Sci China Inf Sci, 2022, 65(5): 159202). An infinite‐dimensional disturbance estimator is constructed in order to estimate the total disturbance. By compensating the total disturbance, we design a state observer to trace the state and then an estimated state and estimated total disturbance‐based output feedback control law. It is proved that the original system is exponentially stable, and other states of the closed‐loop are bounded. Some numerical simulations are presented. |
doi_str_mv | 10.1002/mma.9109 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812360813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812360813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpSDyCJRaWFF9SOxmrXgCpVRnKbB1fIlw1SbETVWHiHXhDnoSUsrKcs3w6lx-hW0pGlBD2UJYwyinJz9Cgr3lCUynO0YBQSZKU0fQSXcW4JYRklLIB2sy6CkpvcGxA-53_gMbXFS7qgAEbiAass1g7KPHLbP79-bWezXHsYuNKfPDNG9Z1W1kIHbY-Nm3QUBl3jS4K2EV389eH6HUx30yfkuX68Xk6WSaGMZ4nWo6NsToTxBgOmXVcUieE4FILSbPCaDDOjPM8c9RR6zQwSwsOIpd6nErOh-juNHcf6vfWxUZt6zZU_UrFMsq46J88qvuTMqGOMbhC7YMv-5MVJeqYmeozU8fMepqc6MHvXPevU6vV5Nf_ALZZbk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812360813</pqid></control><display><type>article</type><title>Dynamic stabilization for a cascaded beam PDE–ODE system with boundary disturbance</title><source>Wiley</source><creator>Mei, Zhan‐Dong</creator><creatorcontrib>Mei, Zhan‐Dong</creatorcontrib><description>We are concerned with the dynamic stabilization for a cascaded Euler–Bernoulli beam (EBB) partial differential equation (PDE)–ordinary differential equation (ODE) system subject to boundary control and matched internal uncertainty and external disturbance. State feedback stabilization of such system without disturbance has been recently discussed by X.H. Wu, H. Feng (Sci China Inf Sci, 2022, 65(5): 159202). An infinite‐dimensional disturbance estimator is constructed in order to estimate the total disturbance. By compensating the total disturbance, we design a state observer to trace the state and then an estimated state and estimated total disturbance‐based output feedback control law. It is proved that the original system is exponentially stable, and other states of the closed‐loop are bounded. Some numerical simulations are presented.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9109</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary control ; cascaded PDE–ODE system ; Control theory ; disturbance estimator ; Euler-Bernoulli beams ; Euler–Bernoulli beam equation ; exponential stabilization ; Feedback control ; Output feedback ; Partial differential equations ; Stabilization ; State feedback ; State observers</subject><ispartof>Mathematical methods in the applied sciences, 2023-06, Vol.46 (9), p.10167-10185</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733</citedby><cites>FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733</cites><orcidid>0000-0001-7570-3921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mei, Zhan‐Dong</creatorcontrib><title>Dynamic stabilization for a cascaded beam PDE–ODE system with boundary disturbance</title><title>Mathematical methods in the applied sciences</title><description>We are concerned with the dynamic stabilization for a cascaded Euler–Bernoulli beam (EBB) partial differential equation (PDE)–ordinary differential equation (ODE) system subject to boundary control and matched internal uncertainty and external disturbance. State feedback stabilization of such system without disturbance has been recently discussed by X.H. Wu, H. Feng (Sci China Inf Sci, 2022, 65(5): 159202). An infinite‐dimensional disturbance estimator is constructed in order to estimate the total disturbance. By compensating the total disturbance, we design a state observer to trace the state and then an estimated state and estimated total disturbance‐based output feedback control law. It is proved that the original system is exponentially stable, and other states of the closed‐loop are bounded. Some numerical simulations are presented.</description><subject>Boundary control</subject><subject>cascaded PDE–ODE system</subject><subject>Control theory</subject><subject>disturbance estimator</subject><subject>Euler-Bernoulli beams</subject><subject>Euler–Bernoulli beam equation</subject><subject>exponential stabilization</subject><subject>Feedback control</subject><subject>Output feedback</subject><subject>Partial differential equations</subject><subject>Stabilization</subject><subject>State feedback</subject><subject>State observers</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpSDyCJRaWFF9SOxmrXgCpVRnKbB1fIlw1SbETVWHiHXhDnoSUsrKcs3w6lx-hW0pGlBD2UJYwyinJz9Cgr3lCUynO0YBQSZKU0fQSXcW4JYRklLIB2sy6CkpvcGxA-53_gMbXFS7qgAEbiAass1g7KPHLbP79-bWezXHsYuNKfPDNG9Z1W1kIHbY-Nm3QUBl3jS4K2EV389eH6HUx30yfkuX68Xk6WSaGMZ4nWo6NsToTxBgOmXVcUieE4FILSbPCaDDOjPM8c9RR6zQwSwsOIpd6nErOh-juNHcf6vfWxUZt6zZU_UrFMsq46J88qvuTMqGOMbhC7YMv-5MVJeqYmeozU8fMepqc6MHvXPevU6vV5Nf_ALZZbk0</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Mei, Zhan‐Dong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7570-3921</orcidid></search><sort><creationdate>202306</creationdate><title>Dynamic stabilization for a cascaded beam PDE–ODE system with boundary disturbance</title><author>Mei, Zhan‐Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary control</topic><topic>cascaded PDE–ODE system</topic><topic>Control theory</topic><topic>disturbance estimator</topic><topic>Euler-Bernoulli beams</topic><topic>Euler–Bernoulli beam equation</topic><topic>exponential stabilization</topic><topic>Feedback control</topic><topic>Output feedback</topic><topic>Partial differential equations</topic><topic>Stabilization</topic><topic>State feedback</topic><topic>State observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Zhan‐Dong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Zhan‐Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic stabilization for a cascaded beam PDE–ODE system with boundary disturbance</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-06</date><risdate>2023</risdate><volume>46</volume><issue>9</issue><spage>10167</spage><epage>10185</epage><pages>10167-10185</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We are concerned with the dynamic stabilization for a cascaded Euler–Bernoulli beam (EBB) partial differential equation (PDE)–ordinary differential equation (ODE) system subject to boundary control and matched internal uncertainty and external disturbance. State feedback stabilization of such system without disturbance has been recently discussed by X.H. Wu, H. Feng (Sci China Inf Sci, 2022, 65(5): 159202). An infinite‐dimensional disturbance estimator is constructed in order to estimate the total disturbance. By compensating the total disturbance, we design a state observer to trace the state and then an estimated state and estimated total disturbance‐based output feedback control law. It is proved that the original system is exponentially stable, and other states of the closed‐loop are bounded. Some numerical simulations are presented.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9109</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7570-3921</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-06, Vol.46 (9), p.10167-10185 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2812360813 |
source | Wiley |
subjects | Boundary control cascaded PDE–ODE system Control theory disturbance estimator Euler-Bernoulli beams Euler–Bernoulli beam equation exponential stabilization Feedback control Output feedback Partial differential equations Stabilization State feedback State observers |
title | Dynamic stabilization for a cascaded beam PDE–ODE system with boundary disturbance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A22%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20stabilization%20for%20a%20cascaded%20beam%20PDE%E2%80%93ODE%20system%20with%20boundary%20disturbance&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mei,%20Zhan%E2%80%90Dong&rft.date=2023-06&rft.volume=46&rft.issue=9&rft.spage=10167&rft.epage=10185&rft.pages=10167-10185&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9109&rft_dat=%3Cproquest_cross%3E2812360813%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2239-b75ccdb860cc3a8de371e66637b6718fcbacec5998e1e1deba2d1f3a697b54733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812360813&rft_id=info:pmid/&rfr_iscdi=true |