Loading…

Visual Perception Based Intra Coding Algorithm for H.266/VVC

The latest international video coding standard, H.266/Versatile Video Coding (VVC), supports high-definition videos, with resolutions from 4 K to 8 K or even larger. It offers a higher compression ratio than its predecessor, H.265/High Efficiency Video Coding (HEVC). In addition to the quadtree part...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2023-05, Vol.12 (9), p.2079
Main Authors: Tsai, Yu-Hsiang, Lu, Chen-Rung, Chen, Mei-Juan, Hsieh, Meng-Chun, Yang, Chieh-Ming, Yeh, Chia-Hung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3
cites cdi_FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3
container_end_page
container_issue 9
container_start_page 2079
container_title Electronics (Basel)
container_volume 12
creator Tsai, Yu-Hsiang
Lu, Chen-Rung
Chen, Mei-Juan
Hsieh, Meng-Chun
Yang, Chieh-Ming
Yeh, Chia-Hung
description The latest international video coding standard, H.266/Versatile Video Coding (VVC), supports high-definition videos, with resolutions from 4 K to 8 K or even larger. It offers a higher compression ratio than its predecessor, H.265/High Efficiency Video Coding (HEVC). In addition to the quadtree partition structure of H.265/HEVC, the nested multi-type tree (MTT) structure of H.266/VVC provides more diverse splits through binary and ternary trees. It also includes many new coding tools, which tremendously increases the encoding complexity. This paper proposes a fast intra coding algorithm for H.266/VVC based on visual perception analysis. The algorithm applies the factor of average background luminance for just-noticeable-distortion to identify the visually distinguishable (VD) pixels within a coding unit (CU). We propose calculating the variances of the numbers of VD pixels in various MTT splits of a CU. Intra sub-partitions and matrix weighted intra prediction are turned off conditionally based on the variance of the four variances for MTT splits and a thresholding criterion. The fast horizontal/vertical splitting decisions for binary and ternary trees are proposed by utilizing random forest classifiers of machine learning techniques, which use the information of VD pixels and the quantization parameter. Experimental results show that the proposed algorithm achieves around 47.26% encoding time reduction with a Bjøntegaard Delta Bitrate (BDBR) of 1.535% on average under the All Intra configuration. Overall, this algorithm can significantly speed up H.266/VVC intra coding and outperform previous studies.
doi_str_mv 10.3390/electronics12092079
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2812386830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749097170</galeid><sourcerecordid>A749097170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJg0f4CLwHP22aSJdmAl7qoLRT0oL0u-ZitKdtNTbYH_71b6sGDM4c3DO_N8B4hd8BmQmg2xw7dkGIfXAbONGdKX5DJCQrNNb_8M1-Tac47NpYGUQk2IQ-bkI-mo2-YHB6GEHv6aDJ6uuqHZGgdfei3dNFtYwrD5562MdHljEs532zqW3LVmi7j9BdvyMfz03u9LNavL6t6sS6ckDAUgFh63iqUqiqdtZaV3nCupJWmFMqCAI8WSgHOAK-8MWCNFKWrmBUGWnFD7s93Dyl-HTEPzS4eUz--bHgFXFRy9DKyZmfW1nTYhL6NowM3tsd9cLHHNoz7hSo10wrUSSDOApdizgnb5pDC3qTvBlhzirb5J1rxA5iCbR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812386830</pqid></control><display><type>article</type><title>Visual Perception Based Intra Coding Algorithm for H.266/VVC</title><source>Publicly Available Content (ProQuest)</source><creator>Tsai, Yu-Hsiang ; Lu, Chen-Rung ; Chen, Mei-Juan ; Hsieh, Meng-Chun ; Yang, Chieh-Ming ; Yeh, Chia-Hung</creator><creatorcontrib>Tsai, Yu-Hsiang ; Lu, Chen-Rung ; Chen, Mei-Juan ; Hsieh, Meng-Chun ; Yang, Chieh-Ming ; Yeh, Chia-Hung</creatorcontrib><description>The latest international video coding standard, H.266/Versatile Video Coding (VVC), supports high-definition videos, with resolutions from 4 K to 8 K or even larger. It offers a higher compression ratio than its predecessor, H.265/High Efficiency Video Coding (HEVC). In addition to the quadtree partition structure of H.265/HEVC, the nested multi-type tree (MTT) structure of H.266/VVC provides more diverse splits through binary and ternary trees. It also includes many new coding tools, which tremendously increases the encoding complexity. This paper proposes a fast intra coding algorithm for H.266/VVC based on visual perception analysis. The algorithm applies the factor of average background luminance for just-noticeable-distortion to identify the visually distinguishable (VD) pixels within a coding unit (CU). We propose calculating the variances of the numbers of VD pixels in various MTT splits of a CU. Intra sub-partitions and matrix weighted intra prediction are turned off conditionally based on the variance of the four variances for MTT splits and a thresholding criterion. The fast horizontal/vertical splitting decisions for binary and ternary trees are proposed by utilizing random forest classifiers of machine learning techniques, which use the information of VD pixels and the quantization parameter. Experimental results show that the proposed algorithm achieves around 47.26% encoding time reduction with a Bjøntegaard Delta Bitrate (BDBR) of 1.535% on average under the All Intra configuration. Overall, this algorithm can significantly speed up H.266/VVC intra coding and outperform previous studies.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12092079</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Coding ; Coding standards ; Compression ratio ; Control algorithms ; Decision trees ; High definition ; Image coding ; Machine learning ; Methods ; Neural networks ; Pixels ; Resolution (Optics) ; Video compression ; Visual perception ; Visual perception driven algorithms</subject><ispartof>Electronics (Basel), 2023-05, Vol.12 (9), p.2079</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3</citedby><cites>FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3</cites><orcidid>0000-0002-6614-4635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812386830/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812386830?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Tsai, Yu-Hsiang</creatorcontrib><creatorcontrib>Lu, Chen-Rung</creatorcontrib><creatorcontrib>Chen, Mei-Juan</creatorcontrib><creatorcontrib>Hsieh, Meng-Chun</creatorcontrib><creatorcontrib>Yang, Chieh-Ming</creatorcontrib><creatorcontrib>Yeh, Chia-Hung</creatorcontrib><title>Visual Perception Based Intra Coding Algorithm for H.266/VVC</title><title>Electronics (Basel)</title><description>The latest international video coding standard, H.266/Versatile Video Coding (VVC), supports high-definition videos, with resolutions from 4 K to 8 K or even larger. It offers a higher compression ratio than its predecessor, H.265/High Efficiency Video Coding (HEVC). In addition to the quadtree partition structure of H.265/HEVC, the nested multi-type tree (MTT) structure of H.266/VVC provides more diverse splits through binary and ternary trees. It also includes many new coding tools, which tremendously increases the encoding complexity. This paper proposes a fast intra coding algorithm for H.266/VVC based on visual perception analysis. The algorithm applies the factor of average background luminance for just-noticeable-distortion to identify the visually distinguishable (VD) pixels within a coding unit (CU). We propose calculating the variances of the numbers of VD pixels in various MTT splits of a CU. Intra sub-partitions and matrix weighted intra prediction are turned off conditionally based on the variance of the four variances for MTT splits and a thresholding criterion. The fast horizontal/vertical splitting decisions for binary and ternary trees are proposed by utilizing random forest classifiers of machine learning techniques, which use the information of VD pixels and the quantization parameter. Experimental results show that the proposed algorithm achieves around 47.26% encoding time reduction with a Bjøntegaard Delta Bitrate (BDBR) of 1.535% on average under the All Intra configuration. Overall, this algorithm can significantly speed up H.266/VVC intra coding and outperform previous studies.</description><subject>Algorithms</subject><subject>Coding</subject><subject>Coding standards</subject><subject>Compression ratio</subject><subject>Control algorithms</subject><subject>Decision trees</subject><subject>High definition</subject><subject>Image coding</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Resolution (Optics)</subject><subject>Video compression</subject><subject>Visual perception</subject><subject>Visual perception driven algorithms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1LAzEQDaJg0f4CLwHP22aSJdmAl7qoLRT0oL0u-ZitKdtNTbYH_71b6sGDM4c3DO_N8B4hd8BmQmg2xw7dkGIfXAbONGdKX5DJCQrNNb_8M1-Tac47NpYGUQk2IQ-bkI-mo2-YHB6GEHv6aDJ6uuqHZGgdfei3dNFtYwrD5562MdHljEs532zqW3LVmi7j9BdvyMfz03u9LNavL6t6sS6ckDAUgFh63iqUqiqdtZaV3nCupJWmFMqCAI8WSgHOAK-8MWCNFKWrmBUGWnFD7s93Dyl-HTEPzS4eUz--bHgFXFRy9DKyZmfW1nTYhL6NowM3tsd9cLHHNoz7hSo10wrUSSDOApdizgnb5pDC3qTvBlhzirb5J1rxA5iCbR4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tsai, Yu-Hsiang</creator><creator>Lu, Chen-Rung</creator><creator>Chen, Mei-Juan</creator><creator>Hsieh, Meng-Chun</creator><creator>Yang, Chieh-Ming</creator><creator>Yeh, Chia-Hung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6614-4635</orcidid></search><sort><creationdate>20230501</creationdate><title>Visual Perception Based Intra Coding Algorithm for H.266/VVC</title><author>Tsai, Yu-Hsiang ; Lu, Chen-Rung ; Chen, Mei-Juan ; Hsieh, Meng-Chun ; Yang, Chieh-Ming ; Yeh, Chia-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coding</topic><topic>Coding standards</topic><topic>Compression ratio</topic><topic>Control algorithms</topic><topic>Decision trees</topic><topic>High definition</topic><topic>Image coding</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Resolution (Optics)</topic><topic>Video compression</topic><topic>Visual perception</topic><topic>Visual perception driven algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Yu-Hsiang</creatorcontrib><creatorcontrib>Lu, Chen-Rung</creatorcontrib><creatorcontrib>Chen, Mei-Juan</creatorcontrib><creatorcontrib>Hsieh, Meng-Chun</creatorcontrib><creatorcontrib>Yang, Chieh-Ming</creatorcontrib><creatorcontrib>Yeh, Chia-Hung</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Yu-Hsiang</au><au>Lu, Chen-Rung</au><au>Chen, Mei-Juan</au><au>Hsieh, Meng-Chun</au><au>Yang, Chieh-Ming</au><au>Yeh, Chia-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Perception Based Intra Coding Algorithm for H.266/VVC</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>12</volume><issue>9</issue><spage>2079</spage><pages>2079-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The latest international video coding standard, H.266/Versatile Video Coding (VVC), supports high-definition videos, with resolutions from 4 K to 8 K or even larger. It offers a higher compression ratio than its predecessor, H.265/High Efficiency Video Coding (HEVC). In addition to the quadtree partition structure of H.265/HEVC, the nested multi-type tree (MTT) structure of H.266/VVC provides more diverse splits through binary and ternary trees. It also includes many new coding tools, which tremendously increases the encoding complexity. This paper proposes a fast intra coding algorithm for H.266/VVC based on visual perception analysis. The algorithm applies the factor of average background luminance for just-noticeable-distortion to identify the visually distinguishable (VD) pixels within a coding unit (CU). We propose calculating the variances of the numbers of VD pixels in various MTT splits of a CU. Intra sub-partitions and matrix weighted intra prediction are turned off conditionally based on the variance of the four variances for MTT splits and a thresholding criterion. The fast horizontal/vertical splitting decisions for binary and ternary trees are proposed by utilizing random forest classifiers of machine learning techniques, which use the information of VD pixels and the quantization parameter. Experimental results show that the proposed algorithm achieves around 47.26% encoding time reduction with a Bjøntegaard Delta Bitrate (BDBR) of 1.535% on average under the All Intra configuration. Overall, this algorithm can significantly speed up H.266/VVC intra coding and outperform previous studies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12092079</doi><orcidid>https://orcid.org/0000-0002-6614-4635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-05, Vol.12 (9), p.2079
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2812386830
source Publicly Available Content (ProQuest)
subjects Algorithms
Coding
Coding standards
Compression ratio
Control algorithms
Decision trees
High definition
Image coding
Machine learning
Methods
Neural networks
Pixels
Resolution (Optics)
Video compression
Visual perception
Visual perception driven algorithms
title Visual Perception Based Intra Coding Algorithm for H.266/VVC
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Perception%20Based%20Intra%20Coding%20Algorithm%20for%20H.266/VVC&rft.jtitle=Electronics%20(Basel)&rft.au=Tsai,%20Yu-Hsiang&rft.date=2023-05-01&rft.volume=12&rft.issue=9&rft.spage=2079&rft.pages=2079-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12092079&rft_dat=%3Cgale_proqu%3EA749097170%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-1ee4d2f7e6784cbbb04da2276b6a437b131deb1431ca128daa1ba634c80b3a1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812386830&rft_id=info:pmid/&rft_galeid=A749097170&rfr_iscdi=true