Loading…
Brain metastases assessment by FDG-PET/CT: can it eliminate the necessity for dedicated brain imaging?
Background Brain metastases (BM) are the most common intracranial tumors in adults outnumbering all other intracranial neoplasms. Positron emission tomography combined with computed tomography (PET/CT) is a widely used imaging modality in oncology with a unique combination of cross-sectional anatomi...
Saved in:
Published in: | Egyptian journal of radiology and nuclear medicine 2020-11, Vol.51 (1), p.223-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Brain metastases (BM) are the most common intracranial tumors in adults outnumbering all other intracranial neoplasms. Positron emission tomography combined with computed tomography (PET/CT) is a widely used imaging modality in oncology with a unique combination of cross-sectional anatomic information provided by CT and the metabolic information provided by PET using the [.sup.18F]-2-fluoro-2-deoxy-d-glucose (FDG) as a tracer. The aim of the study is to assess the role and diagnostic performance of brain-included whole-body PET/CT in detection and evaluation of BM and when further imaging is considered necessary. The study was conducted over a period of 12 months on 420 patients suffering from extra-cranial malignancies utilizing brain-included whole-body PET/CT. Results Thirty patients with 71 brain lesions were detected, 18 patients (60%) had BM of unknown origin while 12 patients (40%) presented with known primary tumors. After brain-included whole-body FDG-PET/CT examination, the unknown primaries turned out to be bronchogenic carcinoma in 10 patients (33.3%), renal cell carcinoma in 2 patients (6.7%), and lymphoma in 2 patients (6.7%), yet the primary tumors remained unknown in 4 patients (13.3%). In 61 lesions (85.9%), the max SUV ranged from 0.2- < 10, while in 10 lesions (14.1%) the max SUV ranged from 10 to 20. Hypometabolic lesions were reported in 41 (57.7%) lesions, hypermetabolic in 3 lesions (4.2%), whereas 27 lesions (38.0%) showed similar FDG uptake to the corresponding contralateral brain matter. PET/CT overall sensitivity, specificity, positive and negative predictive, and accuracy values were 78.1, 92.6, 83.3, 90, and 88% respectively. Conclusion Brain-included whole-body FDG-PET/CT provides valuable complementary information in the evaluation of patients with suspected BM. However, the diagnostic performance of brain PET-CT carries the possibility of false-negative results with consequent false sense of security. The clinicians should learn about the possible pitfalls of PET/CT interpretation to direct patients with persistent neurological symptoms or high suspicion for BM for further dedicated CNS imaging. |
---|---|
ISSN: | 0378-603X 2090-4762 |
DOI: | 10.1186/s43055-020-00342-8 |