Loading…

Converging State Distributions for Discrete Modulated CVQKD Protocols

Consider the problem of using a finite set of coherent states to distribute secret keys over a quantum channel. It is known that computing the exact secret key rate in this scenario is intractable due to the infinite dimensionality of the Hilbert spaces and usually one computes a lower bound using a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Micael Andrade Dias, Francisco Marcos de Assis
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Micael Andrade Dias
Francisco Marcos de Assis
description Consider the problem of using a finite set of coherent states to distribute secret keys over a quantum channel. It is known that computing the exact secret key rate in this scenario is intractable due to the infinite dimensionality of the Hilbert spaces and usually one computes a lower bound using a Gaussian equivalent bipartite state in the entangled based version of the protocol, which leads to underestimating the actual protocol capability of generating secret keys for the sake of security. Here, we define the QKD protocol's non-Gaussianity, a function quantifying the amount of secret key rate lost due to assuming a Gaussian model when a non-Gaussian modulation was used, and develop relevant properties for it. We show that if the set of coherent states is induced by a random variable approaching the AWGN channel capacity, then the protocol's non-Gaussianity vanishes, meaning that there is no loss of secret key rate due to the use of a Gaussian model for computing bound on the secret key rate. The numerical results show that by using a 256-QAM with Gauss-Hermite shaping, the loss of secret key rate quickly falls below \(10^{-5}\) as the distance increases.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2812873375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812873375</sourcerecordid><originalsourceid>FETCH-proquest_journals_28128733753</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_WOgs2NtM72oEERRFVzFdZUX21Xu7fX8GfUCngZmZiQCU2kTZFmAhQuYhjmPYpZAkKhBljvatqTe2l1dXOy0Lw47MwzuDlmWH9DUN6SmdsPXj9LQyv1-OhTwTOmxw5JWYd_XIOvxxKdb78pYfoifhy2t21YCe7JQqyDaQpUqlifrv-gCCdDrj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812873375</pqid></control><display><type>article</type><title>Converging State Distributions for Discrete Modulated CVQKD Protocols</title><source>Publicly Available Content (ProQuest)</source><creator>Micael Andrade Dias ; Francisco Marcos de Assis</creator><creatorcontrib>Micael Andrade Dias ; Francisco Marcos de Assis</creatorcontrib><description>Consider the problem of using a finite set of coherent states to distribute secret keys over a quantum channel. It is known that computing the exact secret key rate in this scenario is intractable due to the infinite dimensionality of the Hilbert spaces and usually one computes a lower bound using a Gaussian equivalent bipartite state in the entangled based version of the protocol, which leads to underestimating the actual protocol capability of generating secret keys for the sake of security. Here, we define the QKD protocol's non-Gaussianity, a function quantifying the amount of secret key rate lost due to assuming a Gaussian model when a non-Gaussian modulation was used, and develop relevant properties for it. We show that if the set of coherent states is induced by a random variable approaching the AWGN channel capacity, then the protocol's non-Gaussianity vanishes, meaning that there is no loss of secret key rate due to the use of a Gaussian model for computing bound on the secret key rate. The numerical results show that by using a 256-QAM with Gauss-Hermite shaping, the loss of secret key rate quickly falls below \(10^{-5}\) as the distance increases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Channel capacity ; Computation ; Hilbert space ; Lower bounds ; Protocol ; Random variables</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2812873375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Micael Andrade Dias</creatorcontrib><creatorcontrib>Francisco Marcos de Assis</creatorcontrib><title>Converging State Distributions for Discrete Modulated CVQKD Protocols</title><title>arXiv.org</title><description>Consider the problem of using a finite set of coherent states to distribute secret keys over a quantum channel. It is known that computing the exact secret key rate in this scenario is intractable due to the infinite dimensionality of the Hilbert spaces and usually one computes a lower bound using a Gaussian equivalent bipartite state in the entangled based version of the protocol, which leads to underestimating the actual protocol capability of generating secret keys for the sake of security. Here, we define the QKD protocol's non-Gaussianity, a function quantifying the amount of secret key rate lost due to assuming a Gaussian model when a non-Gaussian modulation was used, and develop relevant properties for it. We show that if the set of coherent states is induced by a random variable approaching the AWGN channel capacity, then the protocol's non-Gaussianity vanishes, meaning that there is no loss of secret key rate due to the use of a Gaussian model for computing bound on the secret key rate. The numerical results show that by using a 256-QAM with Gauss-Hermite shaping, the loss of secret key rate quickly falls below \(10^{-5}\) as the distance increases.</description><subject>Channel capacity</subject><subject>Computation</subject><subject>Hilbert space</subject><subject>Lower bounds</subject><subject>Protocol</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEKgkAUAJcgSMp_WOgs2NtM72oEERRFVzFdZUX21Xu7fX8GfUCngZmZiQCU2kTZFmAhQuYhjmPYpZAkKhBljvatqTe2l1dXOy0Lw47MwzuDlmWH9DUN6SmdsPXj9LQyv1-OhTwTOmxw5JWYd_XIOvxxKdb78pYfoifhy2t21YCe7JQqyDaQpUqlifrv-gCCdDrj</recordid><startdate>20230602</startdate><enddate>20230602</enddate><creator>Micael Andrade Dias</creator><creator>Francisco Marcos de Assis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230602</creationdate><title>Converging State Distributions for Discrete Modulated CVQKD Protocols</title><author>Micael Andrade Dias ; Francisco Marcos de Assis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28128733753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channel capacity</topic><topic>Computation</topic><topic>Hilbert space</topic><topic>Lower bounds</topic><topic>Protocol</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Micael Andrade Dias</creatorcontrib><creatorcontrib>Francisco Marcos de Assis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micael Andrade Dias</au><au>Francisco Marcos de Assis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Converging State Distributions for Discrete Modulated CVQKD Protocols</atitle><jtitle>arXiv.org</jtitle><date>2023-06-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Consider the problem of using a finite set of coherent states to distribute secret keys over a quantum channel. It is known that computing the exact secret key rate in this scenario is intractable due to the infinite dimensionality of the Hilbert spaces and usually one computes a lower bound using a Gaussian equivalent bipartite state in the entangled based version of the protocol, which leads to underestimating the actual protocol capability of generating secret keys for the sake of security. Here, we define the QKD protocol's non-Gaussianity, a function quantifying the amount of secret key rate lost due to assuming a Gaussian model when a non-Gaussian modulation was used, and develop relevant properties for it. We show that if the set of coherent states is induced by a random variable approaching the AWGN channel capacity, then the protocol's non-Gaussianity vanishes, meaning that there is no loss of secret key rate due to the use of a Gaussian model for computing bound on the secret key rate. The numerical results show that by using a 256-QAM with Gauss-Hermite shaping, the loss of secret key rate quickly falls below \(10^{-5}\) as the distance increases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2812873375
source Publicly Available Content (ProQuest)
subjects Channel capacity
Computation
Hilbert space
Lower bounds
Protocol
Random variables
title Converging State Distributions for Discrete Modulated CVQKD Protocols
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Converging%20State%20Distributions%20for%20Discrete%20Modulated%20CVQKD%20Protocols&rft.jtitle=arXiv.org&rft.au=Micael%20Andrade%20Dias&rft.date=2023-06-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2812873375%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28128733753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812873375&rft_id=info:pmid/&rfr_iscdi=true