Loading…
Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model
The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic...
Saved in:
Published in: | Acta geotechnica 2023-05, Vol.18 (5), p.2289-2307 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163 |
container_end_page | 2307 |
container_issue | 5 |
container_start_page | 2289 |
container_title | Acta geotechnica |
container_volume | 18 |
creator | Ip, Sabrina C. Y. Borja, Ronaldo I. |
description | The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness. |
doi_str_mv | 10.1007/s11440-022-01784-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812901032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812901032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssQ74kTjxElW8pCI2sLamjlNcUrt4nEX4elKKYMdqZnHuHc0h5IKzK85YfY2clyUrmBAF43VTFuKAzHijeMG5lIe_u6iOyQnimjElRalmpHsa-uzRQu-oD9klsNnHgDR21PWA2VsKwWPMKW7HCaFDQMhDguxaansY3UhTtO9IB_RhRYG-xU1cueA_YddEN7F1_Rk56qBHd_4zT8nr3e3L_KFYPN8_zm8WhZVc58KJztUKFFRWV9BysdSdXNq6BeWgZEJVS6V0q4WY3iqbWltmlZJ12zas1lzJU3K5792m-DE4zGYdhxSmk0Y0XGjGmRQTJfaUTRExuc5sk99AGg1nZufT7H2ayaf59ml2IbkP4QSHlUt_1f-kvgBa4nnp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812901032</pqid></control><display><type>article</type><title>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</title><source>Springer Nature</source><creator>Ip, Sabrina C. Y. ; Borja, Ronaldo I.</creator><creatorcontrib>Ip, Sabrina C. Y. ; Borja, Ronaldo I.</creatorcontrib><description>The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-022-01784-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Clay ; Clay minerals ; Complex Fluids and Microfluidics ; Elastic anisotropy ; Elastic properties ; Elasticity ; Engineering ; Evolution ; Foundations ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Homogenization ; Hydraulics ; Mechanical properties ; Microstructure ; Research Paper ; Rock ; Rocks ; Saturation ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; Stiffness</subject><ispartof>Acta geotechnica, 2023-05, Vol.18 (5), p.2289-2307</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</citedby><cites>FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ip, Sabrina C. Y.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><title>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.</description><subject>Anisotropy</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Complex Fluids and Microfluidics</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Homogenization</subject><subject>Hydraulics</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Research Paper</subject><subject>Rock</subject><subject>Rocks</subject><subject>Saturation</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wssQ74kTjxElW8pCI2sLamjlNcUrt4nEX4elKKYMdqZnHuHc0h5IKzK85YfY2clyUrmBAF43VTFuKAzHijeMG5lIe_u6iOyQnimjElRalmpHsa-uzRQu-oD9klsNnHgDR21PWA2VsKwWPMKW7HCaFDQMhDguxaansY3UhTtO9IB_RhRYG-xU1cueA_YddEN7F1_Rk56qBHd_4zT8nr3e3L_KFYPN8_zm8WhZVc58KJztUKFFRWV9BysdSdXNq6BeWgZEJVS6V0q4WY3iqbWltmlZJ12zas1lzJU3K5792m-DE4zGYdhxSmk0Y0XGjGmRQTJfaUTRExuc5sk99AGg1nZufT7H2ayaf59ml2IbkP4QSHlUt_1f-kvgBa4nnp</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ip, Sabrina C. Y.</creator><creator>Borja, Ronaldo I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230501</creationdate><title>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</title><author>Ip, Sabrina C. Y. ; Borja, Ronaldo I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Complex Fluids and Microfluidics</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Homogenization</topic><topic>Hydraulics</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Research Paper</topic><topic>Rock</topic><topic>Rocks</topic><topic>Saturation</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Sabrina C. Y.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Sabrina C. Y.</au><au>Borja, Ronaldo I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>2289</spage><epage>2307</epage><pages>2289-2307</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-022-01784-2</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2023-05, Vol.18 (5), p.2289-2307 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_proquest_journals_2812901032 |
source | Springer Nature |
subjects | Anisotropy Clay Clay minerals Complex Fluids and Microfluidics Elastic anisotropy Elastic properties Elasticity Engineering Evolution Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Homogenization Hydraulics Mechanical properties Microstructure Research Paper Rock Rocks Saturation Soft and Granular Matter Soil Science & Conservation Solid Mechanics Stiffness |
title | Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20interactions%20of%20elastic%20anisotropy%20in%20unsaturated%20clayey%20rocks%20using%20a%20homogenization%20model&rft.jtitle=Acta%20geotechnica&rft.au=Ip,%20Sabrina%20C.%20Y.&rft.date=2023-05-01&rft.volume=18&rft.issue=5&rft.spage=2289&rft.epage=2307&rft.pages=2289-2307&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-022-01784-2&rft_dat=%3Cproquest_cross%3E2812901032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812901032&rft_id=info:pmid/&rfr_iscdi=true |