Loading…

Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model

The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic...

Full description

Saved in:
Bibliographic Details
Published in:Acta geotechnica 2023-05, Vol.18 (5), p.2289-2307
Main Authors: Ip, Sabrina C. Y., Borja, Ronaldo I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163
cites cdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163
container_end_page 2307
container_issue 5
container_start_page 2289
container_title Acta geotechnica
container_volume 18
creator Ip, Sabrina C. Y.
Borja, Ronaldo I.
description The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.
doi_str_mv 10.1007/s11440-022-01784-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2812901032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2812901032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssQ74kTjxElW8pCI2sLamjlNcUrt4nEX4elKKYMdqZnHuHc0h5IKzK85YfY2clyUrmBAF43VTFuKAzHijeMG5lIe_u6iOyQnimjElRalmpHsa-uzRQu-oD9klsNnHgDR21PWA2VsKwWPMKW7HCaFDQMhDguxaansY3UhTtO9IB_RhRYG-xU1cueA_YddEN7F1_Rk56qBHd_4zT8nr3e3L_KFYPN8_zm8WhZVc58KJztUKFFRWV9BysdSdXNq6BeWgZEJVS6V0q4WY3iqbWltmlZJ12zas1lzJU3K5792m-DE4zGYdhxSmk0Y0XGjGmRQTJfaUTRExuc5sk99AGg1nZufT7H2ayaf59ml2IbkP4QSHlUt_1f-kvgBa4nnp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812901032</pqid></control><display><type>article</type><title>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</title><source>Springer Nature</source><creator>Ip, Sabrina C. Y. ; Borja, Ronaldo I.</creator><creatorcontrib>Ip, Sabrina C. Y. ; Borja, Ronaldo I.</creatorcontrib><description>The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-022-01784-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Clay ; Clay minerals ; Complex Fluids and Microfluidics ; Elastic anisotropy ; Elastic properties ; Elasticity ; Engineering ; Evolution ; Foundations ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Homogenization ; Hydraulics ; Mechanical properties ; Microstructure ; Research Paper ; Rock ; Rocks ; Saturation ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; Stiffness</subject><ispartof>Acta geotechnica, 2023-05, Vol.18 (5), p.2289-2307</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</citedby><cites>FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ip, Sabrina C. Y.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><title>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.</description><subject>Anisotropy</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Complex Fluids and Microfluidics</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Homogenization</subject><subject>Hydraulics</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Research Paper</subject><subject>Rock</subject><subject>Rocks</subject><subject>Saturation</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>Stiffness</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wssQ74kTjxElW8pCI2sLamjlNcUrt4nEX4elKKYMdqZnHuHc0h5IKzK85YfY2clyUrmBAF43VTFuKAzHijeMG5lIe_u6iOyQnimjElRalmpHsa-uzRQu-oD9klsNnHgDR21PWA2VsKwWPMKW7HCaFDQMhDguxaansY3UhTtO9IB_RhRYG-xU1cueA_YddEN7F1_Rk56qBHd_4zT8nr3e3L_KFYPN8_zm8WhZVc58KJztUKFFRWV9BysdSdXNq6BeWgZEJVS6V0q4WY3iqbWltmlZJ12zas1lzJU3K5792m-DE4zGYdhxSmk0Y0XGjGmRQTJfaUTRExuc5sk99AGg1nZufT7H2ayaf59ml2IbkP4QSHlUt_1f-kvgBa4nnp</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ip, Sabrina C. Y.</creator><creator>Borja, Ronaldo I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230501</creationdate><title>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</title><author>Ip, Sabrina C. Y. ; Borja, Ronaldo I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Complex Fluids and Microfluidics</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Homogenization</topic><topic>Hydraulics</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Research Paper</topic><topic>Rock</topic><topic>Rocks</topic><topic>Saturation</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ip, Sabrina C. Y.</creatorcontrib><creatorcontrib>Borja, Ronaldo I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ip, Sabrina C. Y.</au><au>Borja, Ronaldo I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>18</volume><issue>5</issue><spage>2289</spage><epage>2307</epage><pages>2289-2307</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>The microstructure of a geomaterial plays a significant role in determining its macroscale properties. Most clay rocks have an anisotropic microstructure due to preferential orientation of the pores and mineral grains, which results in transversely isotropic mechanical properties. Their anisotropic microstructure is complex and spans multiple orders of magnitudes. The interactions between anisotropy at different scales in these rocks can give rise to emerging properties such as saturation-dependent elastic anisotropy. In this study, we develop a homogenization model with three levels of upscaling to capture the multiscale interactions of elastic anisotropy in unsaturated clay rocks. The model provides an enriched description of the elastic behavior of clay rocks during changes in the degree of saturation by bridging the nano-, micro- and macroscale microstructures. Stress-point simulations are presented to demonstrate the interactions between anisotropy at different spatial scales that result in the elastic behavior of clay rocks observed in the literature, including constant anisotropy, evolving anisotropy and a rotation of the principal orientation of anisotropy. The results highlight that constant and evolving elastic anisotropy can originate from the same microstructural features that either neutralize or enhance one another. Overall, the proposed model offers a quantitative link between anisotropy at multiple scales in clay rocks and its macroscopic anisotropic stiffness.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-022-01784-2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2023-05, Vol.18 (5), p.2289-2307
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2812901032
source Springer Nature
subjects Anisotropy
Clay
Clay minerals
Complex Fluids and Microfluidics
Elastic anisotropy
Elastic properties
Elasticity
Engineering
Evolution
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Homogenization
Hydraulics
Mechanical properties
Microstructure
Research Paper
Rock
Rocks
Saturation
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Stiffness
title Multiscale interactions of elastic anisotropy in unsaturated clayey rocks using a homogenization model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20interactions%20of%20elastic%20anisotropy%20in%20unsaturated%20clayey%20rocks%20using%20a%20homogenization%20model&rft.jtitle=Acta%20geotechnica&rft.au=Ip,%20Sabrina%20C.%20Y.&rft.date=2023-05-01&rft.volume=18&rft.issue=5&rft.spage=2289&rft.epage=2307&rft.pages=2289-2307&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-022-01784-2&rft_dat=%3Cproquest_cross%3E2812901032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e2fe76a6a5c95ad12b9f3bc7da6ea40265b669d9221134879c0c6637dd8079163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812901032&rft_id=info:pmid/&rfr_iscdi=true