Loading…

A memetic procedure for global multi-objective optimization

In this paper we consider multi-objective optimization problems over a box. Several computational approaches to solve these problems have been proposed in the literature, that broadly fall into two main classes: evolutionary methods, which are usually very good at exploring the feasible region and r...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming computation 2023-06, Vol.15 (2), p.227-267
Main Authors: Lapucci, Matteo, Mansueto, Pierluigi, Schoen, Fabio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493
cites cdi_FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493
container_end_page 267
container_issue 2
container_start_page 227
container_title Mathematical programming computation
container_volume 15
creator Lapucci, Matteo
Mansueto, Pierluigi
Schoen, Fabio
description In this paper we consider multi-objective optimization problems over a box. Several computational approaches to solve these problems have been proposed in the literature, that broadly fall into two main classes: evolutionary methods, which are usually very good at exploring the feasible region and retrieving good solutions even in the nonconvex case, and descent methods, which excel in efficiently approximating good quality solutions. In this paper, first we confirm, through numerical experiments, the advantages and disadvantages of these approaches. Then we propose a new method which combines the good features of both. The resulting algorithm, which we call Non-dominated Sorting Memetic Algorithm, besides enjoying interesting theoretical properties, excels in all of the numerical tests we performed on several, widely employed, test functions.
doi_str_mv 10.1007/s12532-022-00231-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813001650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813001650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFz6uZZJNs8FSKWqHgRc8hmyYlZbepSVbQX290RW8ODDOH994MH0KXgK8BY3GTgDBKakxKY0KhpidoBi0XNZFMnP7ujTxHi5T2uBQloqVyhm6X1WAHm72pjjEYux2jrVyI1a4Pne6rYeyzr0O3tyb7N1uFY_aD_9DZh8MFOnO6T3bxM-fo5f7uebWuN08Pj6vlpjaU01yD1AQkBwmdcVw45kAQ45zg0LSdpgQLIMR0TAPBDZeMia1rOu2o2dKukXSOrqbc8uHraFNW-zDGQzmpSAsUY-AMFxWZVCaGlKJ16hj9oOO7Aqy-OKmJkyqc1DcnRYuJTqZUxIedjX_R_7g-ATMZaYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813001650</pqid></control><display><type>article</type><title>A memetic procedure for global multi-objective optimization</title><source>Springer Nature</source><creator>Lapucci, Matteo ; Mansueto, Pierluigi ; Schoen, Fabio</creator><creatorcontrib>Lapucci, Matteo ; Mansueto, Pierluigi ; Schoen, Fabio</creatorcontrib><description>In this paper we consider multi-objective optimization problems over a box. Several computational approaches to solve these problems have been proposed in the literature, that broadly fall into two main classes: evolutionary methods, which are usually very good at exploring the feasible region and retrieving good solutions even in the nonconvex case, and descent methods, which excel in efficiently approximating good quality solutions. In this paper, first we confirm, through numerical experiments, the advantages and disadvantages of these approaches. Then we propose a new method which combines the good features of both. The resulting algorithm, which we call Non-dominated Sorting Memetic Algorithm, besides enjoying interesting theoretical properties, excels in all of the numerical tests we performed on several, widely employed, test functions.</description><identifier>ISSN: 1867-2949</identifier><identifier>EISSN: 1867-2957</identifier><identifier>DOI: 10.1007/s12532-022-00231-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Full Length Paper ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Sorting algorithms ; Theory of Computation</subject><ispartof>Mathematical programming computation, 2023-06, Vol.15 (2), p.227-267</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493</citedby><cites>FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493</cites><orcidid>0000-0002-2488-5486 ; 0000-0003-1160-7572 ; 0000-0002-1394-0937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Lapucci, Matteo</creatorcontrib><creatorcontrib>Mansueto, Pierluigi</creatorcontrib><creatorcontrib>Schoen, Fabio</creatorcontrib><title>A memetic procedure for global multi-objective optimization</title><title>Mathematical programming computation</title><addtitle>Math. Prog. Comp</addtitle><description>In this paper we consider multi-objective optimization problems over a box. Several computational approaches to solve these problems have been proposed in the literature, that broadly fall into two main classes: evolutionary methods, which are usually very good at exploring the feasible region and retrieving good solutions even in the nonconvex case, and descent methods, which excel in efficiently approximating good quality solutions. In this paper, first we confirm, through numerical experiments, the advantages and disadvantages of these approaches. Then we propose a new method which combines the good features of both. The resulting algorithm, which we call Non-dominated Sorting Memetic Algorithm, besides enjoying interesting theoretical properties, excels in all of the numerical tests we performed on several, widely employed, test functions.</description><subject>Full Length Paper</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Sorting algorithms</subject><subject>Theory of Computation</subject><issn>1867-2949</issn><issn>1867-2957</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFz6uZZJNs8FSKWqHgRc8hmyYlZbepSVbQX290RW8ODDOH994MH0KXgK8BY3GTgDBKakxKY0KhpidoBi0XNZFMnP7ujTxHi5T2uBQloqVyhm6X1WAHm72pjjEYux2jrVyI1a4Pne6rYeyzr0O3tyb7N1uFY_aD_9DZh8MFOnO6T3bxM-fo5f7uebWuN08Pj6vlpjaU01yD1AQkBwmdcVw45kAQ45zg0LSdpgQLIMR0TAPBDZeMia1rOu2o2dKukXSOrqbc8uHraFNW-zDGQzmpSAsUY-AMFxWZVCaGlKJ16hj9oOO7Aqy-OKmJkyqc1DcnRYuJTqZUxIedjX_R_7g-ATMZaYQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lapucci, Matteo</creator><creator>Mansueto, Pierluigi</creator><creator>Schoen, Fabio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2488-5486</orcidid><orcidid>https://orcid.org/0000-0003-1160-7572</orcidid><orcidid>https://orcid.org/0000-0002-1394-0937</orcidid></search><sort><creationdate>20230601</creationdate><title>A memetic procedure for global multi-objective optimization</title><author>Lapucci, Matteo ; Mansueto, Pierluigi ; Schoen, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Full Length Paper</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Sorting algorithms</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapucci, Matteo</creatorcontrib><creatorcontrib>Mansueto, Pierluigi</creatorcontrib><creatorcontrib>Schoen, Fabio</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Mathematical programming computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapucci, Matteo</au><au>Mansueto, Pierluigi</au><au>Schoen, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A memetic procedure for global multi-objective optimization</atitle><jtitle>Mathematical programming computation</jtitle><stitle>Math. Prog. Comp</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>227</spage><epage>267</epage><pages>227-267</pages><issn>1867-2949</issn><eissn>1867-2957</eissn><abstract>In this paper we consider multi-objective optimization problems over a box. Several computational approaches to solve these problems have been proposed in the literature, that broadly fall into two main classes: evolutionary methods, which are usually very good at exploring the feasible region and retrieving good solutions even in the nonconvex case, and descent methods, which excel in efficiently approximating good quality solutions. In this paper, first we confirm, through numerical experiments, the advantages and disadvantages of these approaches. Then we propose a new method which combines the good features of both. The resulting algorithm, which we call Non-dominated Sorting Memetic Algorithm, besides enjoying interesting theoretical properties, excels in all of the numerical tests we performed on several, widely employed, test functions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12532-022-00231-3</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-2488-5486</orcidid><orcidid>https://orcid.org/0000-0003-1160-7572</orcidid><orcidid>https://orcid.org/0000-0002-1394-0937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-2949
ispartof Mathematical programming computation, 2023-06, Vol.15 (2), p.227-267
issn 1867-2949
1867-2957
language eng
recordid cdi_proquest_journals_2813001650
source Springer Nature
subjects Full Length Paper
Mathematics
Mathematics and Statistics
Mathematics of Computing
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Sorting algorithms
Theory of Computation
title A memetic procedure for global multi-objective optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20memetic%20procedure%20for%20global%20multi-objective%20optimization&rft.jtitle=Mathematical%20programming%20computation&rft.au=Lapucci,%20Matteo&rft.date=2023-06-01&rft.volume=15&rft.issue=2&rft.spage=227&rft.epage=267&rft.pages=227-267&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007/s12532-022-00231-3&rft_dat=%3Cproquest_cross%3E2813001650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-19a2196191bcf67f5f172cff76148ba3207122cb5a120469557df4baf3cd3b493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2813001650&rft_id=info:pmid/&rfr_iscdi=true