Loading…
A graphical user interface (GUI) for model-based radiation-induced acoustic computed tomography
Radiation-induced acoustic computed tomography (RACT) is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues. Traditional back-projection (BP) reconstructions carry noisy and limited-view artifacts. Model-based algorithms have been demonstrated...
Saved in:
Published in: | Journal of innovative optical health science 2023-01, Vol.16 (1) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Radiation-induced acoustic computed tomography (RACT) is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues. Traditional back-projection (BP) reconstructions carry noisy and limited-view artifacts. Model-based algorithms have been demonstrated to overcome the drawbacks of BPs. However, model-based algorithms are relatively more complex to develop and computationally demanding. Furthermore, while a plethora of novel algorithms has been developed over the past decade, most of these algorithms are either not accessible, readily available, or hard to implement for researchers who are not well versed in programming. We developed a user-friendly MATLAB-based graphical user interface (GUI; RACT2D) that facilitates back-projection and model-based image reconstructions for two-dimensional RACT problems. We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI. The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer, thus further accelerating the reconstruction speed. We also share the MATLAB-based codes for evaluating RACT reconstructions, which users with MATLAB programming expertise can further modify to suit their needs. The shared GUI and codes can be of interest to researchers across the globe and assist them in efficient evaluation of improved RACT reconstructions. |
---|---|
ISSN: | 1793-5458 1793-7205 |
DOI: | 10.1142/S1793545822450043 |