Loading…
Performance Simulation of a Coal-Fired Power Plant Integrated with S-CO2 Brayton Cycle for Operational Flexibility Enhancement
In this study, a coal-fired power plant with an integrated S-CO2 cycle is proposed to improve the system operational flexibility. To optimize the performance, a control strategy of variable load regulation is proposed. First, a dynamic mathematical model of the system is established based on the con...
Saved in:
Published in: | International journal of energy research 2023-05, Vol.2023, p.1-21 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a coal-fired power plant with an integrated S-CO2 cycle is proposed to improve the system operational flexibility. To optimize the performance, a control strategy of variable load regulation is proposed. First, a dynamic mathematical model of the system is established based on the conservation of mass and energy principles, and then, dynamic verification of the model is carried out. In order to evaluate the performance of the proposed system, an exergy analysis is performed on the S-CO2 cycle, indicating that the exergy loss rate of the heater in the cycle is the highest. Finally, the dynamic performance of the system is simulated, and the dynamic response of the power generation load is analyzed. In addition, the system is evaluated based on the performance indicator of the flexibility of the power generation. It was found that the proposed system in this paper has a large load ramp rate which can quickly follow the load response. Meanwhile, compared with load downregulation, the system has greater potential for load upregulation. |
---|---|
ISSN: | 0363-907X 1099-114X |
DOI: | 10.1155/2023/7005641 |