Loading…

One-Pot Synthesis of Biodiesel from Acid Oil Using a Switchable Solvent, 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), as a Bifunctional Catalyst

Biodiesel is a promising alternative to petrodiesel, but its production from acid oils retains several technical challenges. Therefore, this study developed a new approach involving 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed one-pot reaction (simultaneous esterification-transesterification)...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research 2023-05, Vol.2023, p.1-12
Main Authors: Nguyen, Hoang Chinh, Pham, Thanh Truc, Nguyen, Nguyen Phuong, Aregawi, Beyene Hagos, Fu, Chun-Chong, Barrow, Colin J., Su, Chia-Hung, Wu, Shao-Jung, Juan, Horng-Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biodiesel is a promising alternative to petrodiesel, but its production from acid oils retains several technical challenges. Therefore, this study developed a new approach involving 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed one-pot reaction (simultaneous esterification-transesterification) to produce biodiesel with enhanced reaction efficiency. The reaction was performed under water removal conditions and optimized using response surface methodology to maximize the biodiesel yield. The optimal conditions for the one-pot reaction had a reaction time of 2.73 h, temperature of 143°C, methanol:oil molar ratio of 24.3 : 1, and DBU loading of 30.1%. Under the optimal conditions, maximum total biodiesel of 97.1% was obtained. DBU could be repeatedly used for at least 5 cycles to yield over 91% biodiesel. This study suggests that DBU efficiently catalyzed esterification and transesterification simultaneously and the DBU-catalyzed one-pot reaction is an efficient method for biodiesel production from high-free-fatty acid oils.
ISSN:0363-907X
1099-114X
DOI:10.1155/2023/2171897