Loading…
Robust model-based switching MIMO air handling control of turbocharged lean-burn SI natural gas variable speed engines
This paper demonstrates a multiple-input multiple-output (MIMO) controller design framework and a controller switching algorithm for MIMO controllers in their state-space form, which together achieve robust, efficient control of turbocharged lean-burn engines over a wide operating space. The control...
Saved in:
Published in: | International journal of engine research 2023-06, Vol.24 (6), p.2783-2804 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper demonstrates a multiple-input multiple-output (MIMO) controller design framework and a controller switching algorithm for MIMO controllers in their state-space form, which together achieve robust, efficient control of turbocharged lean-burn engines over a wide operating space. The controller design framework requires a linearized plant model, and uses the
μ
-synthesis and DK-iteration algorithms while considering state and output uncertainties and actuator bandwidths to synthesize a robust
H
∞
controller. A controller switching methodology using slow-fast controller decomposition and also incorporating hysteresis at switching points is utilized to smoothly transfer control authority between several MIMO controllers. The approach is applied to a high-fidelity truth-reference GT-Power engine model for a lean-burn natural gas-fueled engine to evaluate the closed-loop controller performance. The multi-tracking control problem targets engine speed, differential pressure across throttle as well as air-to-fuel ratio to achieve satisfactory engine performance and emissions without compressor surge. The engine response obtained using the robust MIMO controller is compared with that obtained using a state-of-the-art benchmark controller to evaluate the additional benefits of the MIMO controller. |
---|---|
ISSN: | 1468-0874 2041-3149 |
DOI: | 10.1177/14680874221134318 |