Loading…

Computation of steady-state operating conditions of a DFIG-based wind energy conversion system considering losses

In this paper, steady-state operating conditions of a doubly fed induction generator (DFIG) are computed considering losses of grid-side (GS) filter. Two different cases are studied for steady-state initialization of the DFIG-based wind turbine systems (WTS). In the first case, active power (P) and...

Full description

Saved in:
Bibliographic Details
Published in:Electrical engineering 2023-06, Vol.105 (3), p.1825-1838
Main Authors: Karthik, D. R., Manjarekar, Narayan S., Kotian, Shashidhara Mecha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, steady-state operating conditions of a doubly fed induction generator (DFIG) are computed considering losses of grid-side (GS) filter. Two different cases are studied for steady-state initialization of the DFIG-based wind turbine systems (WTS). In the first case, active power (P) and reactive power (Q) at DFIG terminals are assumed to be known. In the other case wind speed ( V w ), Q is assumed to be known. Apart from considering losses of the DFIG and GS filter, both the cases also consider the non-unity power factor operation of the grid side converter (GSC). For the first case, steady-state operating conditions are calculated by iterative method as well as by non-iterative method. For the second case, iterative method is used to calculate steady-state operating conditions. Calculation of steady-state values of other subsystems of DFIG-based WTS like drive train, controller and network is also shown. The initial values calculated are validated and compared by performing modal analysis and time-domain simulations.
ISSN:0948-7921
1432-0487
DOI:10.1007/s00202-023-01766-x