Loading…

Tangential Impedance

The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are d...

Full description

Saved in:
Bibliographic Details
Published in:Acoustical physics 2023-04, Vol.69 (2), p.278-282
Main Author: Kanev, N. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43
cites cdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43
container_end_page 282
container_issue 2
container_start_page 278
container_title Acoustical physics
container_volume 69
creator Kanev, N. G.
description The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.
doi_str_mv 10.1134/S1063771023700598
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2815363327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749829225</galeid><sourcerecordid>A749829225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</originalsourceid><addsrcrecordid>eNp1kMtLA0EMxgdRsFZvXrwJnrdO5r3HUnwUCh6s52F2NlO27KPObA_-905ZwYNIDgnJ90vCR8gd0AUAF4_vQBXXGijjmlJZmjMyA6lYoYyS57nO4-I0vyRXKe0ppSXnbEZut67fYT82rr1fdwesXe_xmlwE1ya8-clz8vH8tF29Fpu3l_VquSk8l3IsApQAwESF2inUiDXzFaUaaqoVByW9kwqVD0pwJiVVwhhnQqgqWZeiEnxOHqa9hzh8HjGNdj8cY59PWmZAcpVf1Fm1mFQ716Jt-jCM0fkcNXaNH3oMTe4vtSgNKxmTGYAJ8HFIKWKwh9h0Ln5ZoPbklv3jVmbYxKSszY7E31f-h74By4loLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815363327</pqid></control><display><type>article</type><title>Tangential Impedance</title><source>Springer Link</source><creator>Kanev, N. G.</creator><creatorcontrib>Kanev, N. G.</creatorcontrib><description>The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771023700598</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic impedance ; Acoustics ; Dipoles ; Incident waves ; Physical Foundations of Technical Acoustics ; Physics ; Physics and Astronomy ; Reflectance ; Reflection ; Sound waves</subject><ispartof>Acoustical physics, 2023-04, Vol.69 (2), p.278-282</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7710, Acoustical Physics, 2023, Vol. 69, No. 2, pp. 278–282. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Akusticheskii Zhurnal, 2023, Vol. 69, No. 2, pp. 270–274.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</citedby><cites>FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kanev, N. G.</creatorcontrib><title>Tangential Impedance</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.</description><subject>Acoustic impedance</subject><subject>Acoustics</subject><subject>Dipoles</subject><subject>Incident waves</subject><subject>Physical Foundations of Technical Acoustics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Sound waves</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLA0EMxgdRsFZvXrwJnrdO5r3HUnwUCh6s52F2NlO27KPObA_-905ZwYNIDgnJ90vCR8gd0AUAF4_vQBXXGijjmlJZmjMyA6lYoYyS57nO4-I0vyRXKe0ppSXnbEZut67fYT82rr1fdwesXe_xmlwE1ya8-clz8vH8tF29Fpu3l_VquSk8l3IsApQAwESF2inUiDXzFaUaaqoVByW9kwqVD0pwJiVVwhhnQqgqWZeiEnxOHqa9hzh8HjGNdj8cY59PWmZAcpVf1Fm1mFQ716Jt-jCM0fkcNXaNH3oMTe4vtSgNKxmTGYAJ8HFIKWKwh9h0Ln5ZoPbklv3jVmbYxKSszY7E31f-h74By4loLQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Kanev, N. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Tangential Impedance</title><author>Kanev, N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic impedance</topic><topic>Acoustics</topic><topic>Dipoles</topic><topic>Incident waves</topic><topic>Physical Foundations of Technical Acoustics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Sound waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanev, N. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanev, N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tangential Impedance</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>69</volume><issue>2</issue><spage>278</spage><epage>282</epage><pages>278-282</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771023700598</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7710
ispartof Acoustical physics, 2023-04, Vol.69 (2), p.278-282
issn 1063-7710
1562-6865
language eng
recordid cdi_proquest_journals_2815363327
source Springer Link
subjects Acoustic impedance
Acoustics
Dipoles
Incident waves
Physical Foundations of Technical Acoustics
Physics
Physics and Astronomy
Reflectance
Reflection
Sound waves
title Tangential Impedance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tangential%20Impedance&rft.jtitle=Acoustical%20physics&rft.au=Kanev,%20N.%20G.&rft.date=2023-04-01&rft.volume=69&rft.issue=2&rft.spage=278&rft.epage=282&rft.pages=278-282&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771023700598&rft_dat=%3Cgale_proqu%3EA749829225%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815363327&rft_id=info:pmid/&rft_galeid=A749829225&rfr_iscdi=true