Loading…
Tangential Impedance
The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are d...
Saved in:
Published in: | Acoustical physics 2023-04, Vol.69 (2), p.278-282 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43 |
container_end_page | 282 |
container_issue | 2 |
container_start_page | 278 |
container_title | Acoustical physics |
container_volume | 69 |
creator | Kanev, N. G. |
description | The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces. |
doi_str_mv | 10.1134/S1063771023700598 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2815363327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749829225</galeid><sourcerecordid>A749829225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</originalsourceid><addsrcrecordid>eNp1kMtLA0EMxgdRsFZvXrwJnrdO5r3HUnwUCh6s52F2NlO27KPObA_-905ZwYNIDgnJ90vCR8gd0AUAF4_vQBXXGijjmlJZmjMyA6lYoYyS57nO4-I0vyRXKe0ppSXnbEZut67fYT82rr1fdwesXe_xmlwE1ya8-clz8vH8tF29Fpu3l_VquSk8l3IsApQAwESF2inUiDXzFaUaaqoVByW9kwqVD0pwJiVVwhhnQqgqWZeiEnxOHqa9hzh8HjGNdj8cY59PWmZAcpVf1Fm1mFQ716Jt-jCM0fkcNXaNH3oMTe4vtSgNKxmTGYAJ8HFIKWKwh9h0Ln5ZoPbklv3jVmbYxKSszY7E31f-h74By4loLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815363327</pqid></control><display><type>article</type><title>Tangential Impedance</title><source>Springer Link</source><creator>Kanev, N. G.</creator><creatorcontrib>Kanev, N. G.</creatorcontrib><description>The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771023700598</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustic impedance ; Acoustics ; Dipoles ; Incident waves ; Physical Foundations of Technical Acoustics ; Physics ; Physics and Astronomy ; Reflectance ; Reflection ; Sound waves</subject><ispartof>Acoustical physics, 2023-04, Vol.69 (2), p.278-282</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7710, Acoustical Physics, 2023, Vol. 69, No. 2, pp. 278–282. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Akusticheskii Zhurnal, 2023, Vol. 69, No. 2, pp. 270–274.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</citedby><cites>FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kanev, N. G.</creatorcontrib><title>Tangential Impedance</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.</description><subject>Acoustic impedance</subject><subject>Acoustics</subject><subject>Dipoles</subject><subject>Incident waves</subject><subject>Physical Foundations of Technical Acoustics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Sound waves</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLA0EMxgdRsFZvXrwJnrdO5r3HUnwUCh6s52F2NlO27KPObA_-905ZwYNIDgnJ90vCR8gd0AUAF4_vQBXXGijjmlJZmjMyA6lYoYyS57nO4-I0vyRXKe0ppSXnbEZut67fYT82rr1fdwesXe_xmlwE1ya8-clz8vH8tF29Fpu3l_VquSk8l3IsApQAwESF2inUiDXzFaUaaqoVByW9kwqVD0pwJiVVwhhnQqgqWZeiEnxOHqa9hzh8HjGNdj8cY59PWmZAcpVf1Fm1mFQ716Jt-jCM0fkcNXaNH3oMTe4vtSgNKxmTGYAJ8HFIKWKwh9h0Ln5ZoPbklv3jVmbYxKSszY7E31f-h74By4loLQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Kanev, N. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Tangential Impedance</title><author>Kanev, N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic impedance</topic><topic>Acoustics</topic><topic>Dipoles</topic><topic>Incident waves</topic><topic>Physical Foundations of Technical Acoustics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Sound waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanev, N. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanev, N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tangential Impedance</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>69</volume><issue>2</issue><spage>278</spage><epage>282</epage><pages>278-282</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>The problem of reflection of a plane sound wave from a rigid surface covered with dipole resonators is solved. It is shown that such a surface responds to obliquely incident waves, while the found angular dependence of the reflection coefficient cannot be obtained for surfaces whose properties are described by conventional impedance. Therefore, the concept of tangential impedance is proposed: the ratio of tangential acoustic force on a surface to its normal velocity. It is shown that the tangential impedance can be both isotropic and anisotropic; i.e., the magnitude of the latter depends on the direction of the incident wave. It is proposed to call the corresponding surfaces unpolarized and polarized. In some cases, tangential impedance can be useful for macroscopic description of complex metasurfaces.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771023700598</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7710 |
ispartof | Acoustical physics, 2023-04, Vol.69 (2), p.278-282 |
issn | 1063-7710 1562-6865 |
language | eng |
recordid | cdi_proquest_journals_2815363327 |
source | Springer Link |
subjects | Acoustic impedance Acoustics Dipoles Incident waves Physical Foundations of Technical Acoustics Physics Physics and Astronomy Reflectance Reflection Sound waves |
title | Tangential Impedance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tangential%20Impedance&rft.jtitle=Acoustical%20physics&rft.au=Kanev,%20N.%20G.&rft.date=2023-04-01&rft.volume=69&rft.issue=2&rft.spage=278&rft.epage=282&rft.pages=278-282&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771023700598&rft_dat=%3Cgale_proqu%3EA749829225%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-f1911124be7a6e7eed2cb0071d0763165ca56e6cf64325506488a8ffbb5d94b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815363327&rft_id=info:pmid/&rft_galeid=A749829225&rfr_iscdi=true |