Loading…

Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate

Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably...

Full description

Saved in:
Bibliographic Details
Published in:Science China materials 2023-05, Vol.66 (5), p.1820-1828
Main Authors: Zhao, Lei, Sun, Qijiao, Li, Mao, Zhong, Yafei, Shen, Peiqi, Lin, Yunxiang, Xu, Kun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203
cites cdi_FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203
container_end_page 1828
container_issue 5
container_start_page 1820
container_title Science China materials
container_volume 66
creator Zhao, Lei
Sun, Qijiao
Li, Mao
Zhong, Yafei
Shen, Peiqi
Lin, Yunxiang
Xu, Kun
description Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably due to the absence of active species because of the poor conductivity and high energy barrier of the surface reconstruction. Herein, we report Cu 3 N nanosheets with a typical antiperovskite structure as electrocatalysts for selectively converting methanol to formate. The as-prepared antiperovskite nitride Cu 3 N samples exhibit a Faradic efficiency exceeding 90% for methanol to formate over a wide potential range, which was further confirmed by online electrochemical mass spectrometry and in situ infrared reflectance absorption spectroscopy. Moreover, the high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and in situ Raman spectroscopy results indicate that the core-shell structure formed by generating surface Cu(II) species triggers the electrocatalytic methanol oxidation reaction activity, whereas the pristine Cu 3 N core facilitates the electron transport inside the catalyst during the electrocatalytic process. This study provides a modelable scheme for the highly selective conversion of methanol and introduces a novel nonoxide perovskite material for the electrochemical conversion of small-organic molecules.
doi_str_mv 10.1007/s40843-022-2311-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815363393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815363393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wFvA8-ok2WyTYyl-QdGLnkOaTmzq7qYmqdh_75YVPHmZmcP7vAMPIVcMbhjA7DbXoGpRAecVF4xVhxMy4UzrqpbATocbtKwU5805mea8BQDWSMa0mhCc9yXsMMWv_BEK0j6UFNZIF3vxTHvbx7xBLJn6mCh6H1zAvlBs0ZUU3Qa74GxL43dY2xJiT6OnHZbNALa0xCPW2YKX5MzbNuP0d1-Qt_u718VjtXx5eFrMl5UTUpfKeufkWivUtWe1BcWZXAluAXijmNKqXjmQM7AaJCDX2slm5bQUvBbDAHFBrsfeXYqfe8zFbOM-9cNLwxWTohFCiyHFxpRLMeeE3uxS6Gw6GAbmKNSMQs0g1ByFmsPA8JHJQ7Z_x_TX_D_0A71FeOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815363393</pqid></control><display><type>article</type><title>Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate</title><source>Springer Link</source><creator>Zhao, Lei ; Sun, Qijiao ; Li, Mao ; Zhong, Yafei ; Shen, Peiqi ; Lin, Yunxiang ; Xu, Kun</creator><creatorcontrib>Zhao, Lei ; Sun, Qijiao ; Li, Mao ; Zhong, Yafei ; Shen, Peiqi ; Lin, Yunxiang ; Xu, Kun</creatorcontrib><description>Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably due to the absence of active species because of the poor conductivity and high energy barrier of the surface reconstruction. Herein, we report Cu 3 N nanosheets with a typical antiperovskite structure as electrocatalysts for selectively converting methanol to formate. The as-prepared antiperovskite nitride Cu 3 N samples exhibit a Faradic efficiency exceeding 90% for methanol to formate over a wide potential range, which was further confirmed by online electrochemical mass spectrometry and in situ infrared reflectance absorption spectroscopy. Moreover, the high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and in situ Raman spectroscopy results indicate that the core-shell structure formed by generating surface Cu(II) species triggers the electrocatalytic methanol oxidation reaction activity, whereas the pristine Cu 3 N core facilitates the electron transport inside the catalyst during the electrocatalytic process. This study provides a modelable scheme for the highly selective conversion of methanol and introduces a novel nonoxide perovskite material for the electrochemical conversion of small-organic molecules.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-022-2311-y</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Absorption spectroscopy ; Chemistry and Materials Science ; Chemistry/Food Science ; Conversion ; Core-shell structure ; Electrocatalysts ; Electrochemical oxidation ; Electron transport ; High resolution electron microscopy ; Infrared reflection ; Infrared spectroscopy ; Mass spectrometry ; Materials Science ; Methanol ; Nanosheets ; Nitrides ; Organic chemistry ; Oxidation ; Perovskites ; Raman spectroscopy ; Surface chemistry ; X ray absorption</subject><ispartof>Science China materials, 2023-05, Vol.66 (5), p.1820-1828</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203</citedby><cites>FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Sun, Qijiao</creatorcontrib><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Zhong, Yafei</creatorcontrib><creatorcontrib>Shen, Peiqi</creatorcontrib><creatorcontrib>Lin, Yunxiang</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><title>Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably due to the absence of active species because of the poor conductivity and high energy barrier of the surface reconstruction. Herein, we report Cu 3 N nanosheets with a typical antiperovskite structure as electrocatalysts for selectively converting methanol to formate. The as-prepared antiperovskite nitride Cu 3 N samples exhibit a Faradic efficiency exceeding 90% for methanol to formate over a wide potential range, which was further confirmed by online electrochemical mass spectrometry and in situ infrared reflectance absorption spectroscopy. Moreover, the high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and in situ Raman spectroscopy results indicate that the core-shell structure formed by generating surface Cu(II) species triggers the electrocatalytic methanol oxidation reaction activity, whereas the pristine Cu 3 N core facilitates the electron transport inside the catalyst during the electrocatalytic process. This study provides a modelable scheme for the highly selective conversion of methanol and introduces a novel nonoxide perovskite material for the electrochemical conversion of small-organic molecules.</description><subject>Absorption spectroscopy</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Conversion</subject><subject>Core-shell structure</subject><subject>Electrocatalysts</subject><subject>Electrochemical oxidation</subject><subject>Electron transport</subject><subject>High resolution electron microscopy</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Mass spectrometry</subject><subject>Materials Science</subject><subject>Methanol</subject><subject>Nanosheets</subject><subject>Nitrides</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Perovskites</subject><subject>Raman spectroscopy</subject><subject>Surface chemistry</subject><subject>X ray absorption</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWLQ_wFvA8-ok2WyTYyl-QdGLnkOaTmzq7qYmqdh_75YVPHmZmcP7vAMPIVcMbhjA7DbXoGpRAecVF4xVhxMy4UzrqpbATocbtKwU5805mea8BQDWSMa0mhCc9yXsMMWv_BEK0j6UFNZIF3vxTHvbx7xBLJn6mCh6H1zAvlBs0ZUU3Qa74GxL43dY2xJiT6OnHZbNALa0xCPW2YKX5MzbNuP0d1-Qt_u718VjtXx5eFrMl5UTUpfKeufkWivUtWe1BcWZXAluAXijmNKqXjmQM7AaJCDX2slm5bQUvBbDAHFBrsfeXYqfe8zFbOM-9cNLwxWTohFCiyHFxpRLMeeE3uxS6Gw6GAbmKNSMQs0g1ByFmsPA8JHJQ7Z_x_TX_D_0A71FeOg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhao, Lei</creator><creator>Sun, Qijiao</creator><creator>Li, Mao</creator><creator>Zhong, Yafei</creator><creator>Shen, Peiqi</creator><creator>Lin, Yunxiang</creator><creator>Xu, Kun</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate</title><author>Zhao, Lei ; Sun, Qijiao ; Li, Mao ; Zhong, Yafei ; Shen, Peiqi ; Lin, Yunxiang ; Xu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Conversion</topic><topic>Core-shell structure</topic><topic>Electrocatalysts</topic><topic>Electrochemical oxidation</topic><topic>Electron transport</topic><topic>High resolution electron microscopy</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Mass spectrometry</topic><topic>Materials Science</topic><topic>Methanol</topic><topic>Nanosheets</topic><topic>Nitrides</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Perovskites</topic><topic>Raman spectroscopy</topic><topic>Surface chemistry</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Sun, Qijiao</creatorcontrib><creatorcontrib>Li, Mao</creatorcontrib><creatorcontrib>Zhong, Yafei</creatorcontrib><creatorcontrib>Shen, Peiqi</creatorcontrib><creatorcontrib>Lin, Yunxiang</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lei</au><au>Sun, Qijiao</au><au>Li, Mao</au><au>Zhong, Yafei</au><au>Shen, Peiqi</au><au>Lin, Yunxiang</au><au>Xu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>66</volume><issue>5</issue><spage>1820</spage><epage>1828</epage><pages>1820-1828</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably due to the absence of active species because of the poor conductivity and high energy barrier of the surface reconstruction. Herein, we report Cu 3 N nanosheets with a typical antiperovskite structure as electrocatalysts for selectively converting methanol to formate. The as-prepared antiperovskite nitride Cu 3 N samples exhibit a Faradic efficiency exceeding 90% for methanol to formate over a wide potential range, which was further confirmed by online electrochemical mass spectrometry and in situ infrared reflectance absorption spectroscopy. Moreover, the high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and in situ Raman spectroscopy results indicate that the core-shell structure formed by generating surface Cu(II) species triggers the electrocatalytic methanol oxidation reaction activity, whereas the pristine Cu 3 N core facilitates the electron transport inside the catalyst during the electrocatalytic process. This study provides a modelable scheme for the highly selective conversion of methanol and introduces a novel nonoxide perovskite material for the electrochemical conversion of small-organic molecules.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-022-2311-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-05, Vol.66 (5), p.1820-1828
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2815363393
source Springer Link
subjects Absorption spectroscopy
Chemistry and Materials Science
Chemistry/Food Science
Conversion
Core-shell structure
Electrocatalysts
Electrochemical oxidation
Electron transport
High resolution electron microscopy
Infrared reflection
Infrared spectroscopy
Mass spectrometry
Materials Science
Methanol
Nanosheets
Nitrides
Organic chemistry
Oxidation
Perovskites
Raman spectroscopy
Surface chemistry
X ray absorption
title Antiperovskite nitride Cu3N nanosheets for efficient electrochemical oxidation of methanol to formate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiperovskite%20nitride%20Cu3N%20nanosheets%20for%20efficient%20electrochemical%20oxidation%20of%20methanol%20to%20formate&rft.jtitle=Science%20China%20materials&rft.au=Zhao,%20Lei&rft.date=2023-05-01&rft.volume=66&rft.issue=5&rft.spage=1820&rft.epage=1828&rft.pages=1820-1828&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-022-2311-y&rft_dat=%3Cproquest_cross%3E2815363393%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-afcc5d98e94f14a08215b32a0026818984bc0570a9050e299c56bc95324353203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815363393&rft_id=info:pmid/&rfr_iscdi=true