Loading…

Brain-Inspired Spike Echo State Network Dynamics for Aero-engine Intelligent Fault Prediction

Aero-engine fault prediction aims to accurately predict the development trend of the future state of aero-engines, so as to diagnose faults in advance. Traditional aero-engine parameter prediction methods mainly use the nonlinear mapping relationship of time series data but generally ignore the adeq...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Main Authors: Liu, Mo-Ran, Sun, Tao, Sun, Xi-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3
cites cdi_FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Liu, Mo-Ran
Sun, Tao
Sun, Xi-Ming
description Aero-engine fault prediction aims to accurately predict the development trend of the future state of aero-engines, so as to diagnose faults in advance. Traditional aero-engine parameter prediction methods mainly use the nonlinear mapping relationship of time series data but generally ignore the adequate spatio-temporal features contained in aero-engine data. To this end, we propose a brain-inspired spike echo state network (Spike-ESN) model for aero-engine intelligent fault prediction, which is used to effectively capture the evolution process of aero-engine time series data in the framework of spatio-temporal dynamics. In the proposed approach, we design a spike input layer based on Poisson distribution inspired by the spike neural encoding mechanism of biological neurons, which can extract the useful temporal characteristics in aero-engine sequence data. Then, the temporal characteristics are input into a spike reservoir through the current calculation method of spike accumulation in neurons, which projects the data into a high-dimensional sparse space. In addition, we use the ridge regression method to read out the internal state of the spike reservoir. Finally, the experimental results of aero-engine states prediction demonstrate the superiority and potential of the proposed method.
doi_str_mv 10.1109/TIM.2023.3273661
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2815684328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121335</ieee_id><sourcerecordid>2815684328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7x28lYSguRykNqGVHkOjfFfTjBcYX670nVDkx3-c45Vx9Ct5QMKCXZwzx_HTDC-IAzzZWiZ6hHpdRJphQ7Rz1CaJpkQqpLdNW2K0KIVkL30NdjMM4nuW8bF6DEs8atAY_td41n0UTAbxB_67DGT3tvts62uKoDHkKoE_BL5wHnPsJm45bgI56Y3Sbij67I2ehqf40uKrNp4eZ0--hzMp6PXpLp-3M-Gk4Ty7mIyYIAyxaC84XWRmWclQtRlUyVkkuuKm6zUulSCqGIlCVkxIA1tLJaZDaV2vI-uj_2NqH-2UEbi1W9C76bLFhKpUoFZ2lHkSNlQ922AaqiCW5rwr6gpDhILDqJxUFicZLYRe6OEQcA_3DKKO9--wO71216</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815684328</pqid></control><display><type>article</type><title>Brain-Inspired Spike Echo State Network Dynamics for Aero-engine Intelligent Fault Prediction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Mo-Ran ; Sun, Tao ; Sun, Xi-Ming</creator><creatorcontrib>Liu, Mo-Ran ; Sun, Tao ; Sun, Xi-Ming</creatorcontrib><description>Aero-engine fault prediction aims to accurately predict the development trend of the future state of aero-engines, so as to diagnose faults in advance. Traditional aero-engine parameter prediction methods mainly use the nonlinear mapping relationship of time series data but generally ignore the adequate spatio-temporal features contained in aero-engine data. To this end, we propose a brain-inspired spike echo state network (Spike-ESN) model for aero-engine intelligent fault prediction, which is used to effectively capture the evolution process of aero-engine time series data in the framework of spatio-temporal dynamics. In the proposed approach, we design a spike input layer based on Poisson distribution inspired by the spike neural encoding mechanism of biological neurons, which can extract the useful temporal characteristics in aero-engine sequence data. Then, the temporal characteristics are input into a spike reservoir through the current calculation method of spike accumulation in neurons, which projects the data into a high-dimensional sparse space. In addition, we use the ridge regression method to read out the internal state of the spike reservoir. Finally, the experimental results of aero-engine states prediction demonstrate the superiority and potential of the proposed method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3273661</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aero-engine measurement ; Aerospace engines ; Aircraft ; Aircraft propulsion ; artificial neural networks ; Brain ; Brain modeling ; brain-inspired learning systems ; Data models ; Fault diagnosis ; Feature extraction ; Neurons ; Poisson distribution ; Reservoirs ; spatio-temporal dynamics ; Statistical analysis ; Time series ; Time series analysis</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3</citedby><cites>FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3</cites><orcidid>0000-0003-3174-2587 ; 0000-0002-6618-1081 ; 0000-0002-1883-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121335$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Liu, Mo-Ran</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Sun, Xi-Ming</creatorcontrib><title>Brain-Inspired Spike Echo State Network Dynamics for Aero-engine Intelligent Fault Prediction</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Aero-engine fault prediction aims to accurately predict the development trend of the future state of aero-engines, so as to diagnose faults in advance. Traditional aero-engine parameter prediction methods mainly use the nonlinear mapping relationship of time series data but generally ignore the adequate spatio-temporal features contained in aero-engine data. To this end, we propose a brain-inspired spike echo state network (Spike-ESN) model for aero-engine intelligent fault prediction, which is used to effectively capture the evolution process of aero-engine time series data in the framework of spatio-temporal dynamics. In the proposed approach, we design a spike input layer based on Poisson distribution inspired by the spike neural encoding mechanism of biological neurons, which can extract the useful temporal characteristics in aero-engine sequence data. Then, the temporal characteristics are input into a spike reservoir through the current calculation method of spike accumulation in neurons, which projects the data into a high-dimensional sparse space. In addition, we use the ridge regression method to read out the internal state of the spike reservoir. Finally, the experimental results of aero-engine states prediction demonstrate the superiority and potential of the proposed method.</description><subject>Aero-engine measurement</subject><subject>Aerospace engines</subject><subject>Aircraft</subject><subject>Aircraft propulsion</subject><subject>artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>brain-inspired learning systems</subject><subject>Data models</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Neurons</subject><subject>Poisson distribution</subject><subject>Reservoirs</subject><subject>spatio-temporal dynamics</subject><subject>Statistical analysis</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYk7x28lYSguRykNqGVHkOjfFfTjBcYX670nVDkx3-c45Vx9Ct5QMKCXZwzx_HTDC-IAzzZWiZ6hHpdRJphQ7Rz1CaJpkQqpLdNW2K0KIVkL30NdjMM4nuW8bF6DEs8atAY_td41n0UTAbxB_67DGT3tvts62uKoDHkKoE_BL5wHnPsJm45bgI56Y3Sbij67I2ehqf40uKrNp4eZ0--hzMp6PXpLp-3M-Gk4Ty7mIyYIAyxaC84XWRmWclQtRlUyVkkuuKm6zUulSCqGIlCVkxIA1tLJaZDaV2vI-uj_2NqH-2UEbi1W9C76bLFhKpUoFZ2lHkSNlQ922AaqiCW5rwr6gpDhILDqJxUFicZLYRe6OEQcA_3DKKO9--wO71216</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Mo-Ran</creator><creator>Sun, Tao</creator><creator>Sun, Xi-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3174-2587</orcidid><orcidid>https://orcid.org/0000-0002-6618-1081</orcidid><orcidid>https://orcid.org/0000-0002-1883-3495</orcidid></search><sort><creationdate>20230101</creationdate><title>Brain-Inspired Spike Echo State Network Dynamics for Aero-engine Intelligent Fault Prediction</title><author>Liu, Mo-Ran ; Sun, Tao ; Sun, Xi-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aero-engine measurement</topic><topic>Aerospace engines</topic><topic>Aircraft</topic><topic>Aircraft propulsion</topic><topic>artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>brain-inspired learning systems</topic><topic>Data models</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Neurons</topic><topic>Poisson distribution</topic><topic>Reservoirs</topic><topic>spatio-temporal dynamics</topic><topic>Statistical analysis</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mo-Ran</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Sun, Xi-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mo-Ran</au><au>Sun, Tao</au><au>Sun, Xi-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain-Inspired Spike Echo State Network Dynamics for Aero-engine Intelligent Fault Prediction</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Aero-engine fault prediction aims to accurately predict the development trend of the future state of aero-engines, so as to diagnose faults in advance. Traditional aero-engine parameter prediction methods mainly use the nonlinear mapping relationship of time series data but generally ignore the adequate spatio-temporal features contained in aero-engine data. To this end, we propose a brain-inspired spike echo state network (Spike-ESN) model for aero-engine intelligent fault prediction, which is used to effectively capture the evolution process of aero-engine time series data in the framework of spatio-temporal dynamics. In the proposed approach, we design a spike input layer based on Poisson distribution inspired by the spike neural encoding mechanism of biological neurons, which can extract the useful temporal characteristics in aero-engine sequence data. Then, the temporal characteristics are input into a spike reservoir through the current calculation method of spike accumulation in neurons, which projects the data into a high-dimensional sparse space. In addition, we use the ridge regression method to read out the internal state of the spike reservoir. Finally, the experimental results of aero-engine states prediction demonstrate the superiority and potential of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3273661</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3174-2587</orcidid><orcidid>https://orcid.org/0000-0002-6618-1081</orcidid><orcidid>https://orcid.org/0000-0002-1883-3495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2815684328
source IEEE Electronic Library (IEL) Journals
subjects Aero-engine measurement
Aerospace engines
Aircraft
Aircraft propulsion
artificial neural networks
Brain
Brain modeling
brain-inspired learning systems
Data models
Fault diagnosis
Feature extraction
Neurons
Poisson distribution
Reservoirs
spatio-temporal dynamics
Statistical analysis
Time series
Time series analysis
title Brain-Inspired Spike Echo State Network Dynamics for Aero-engine Intelligent Fault Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain-Inspired%20Spike%20Echo%20State%20Network%20Dynamics%20for%20Aero-engine%20Intelligent%20Fault%20Prediction&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Liu,%20Mo-Ran&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3273661&rft_dat=%3Cproquest_cross%3E2815684328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-b0e29b433b77a6932db4fd26d53536f3c9d67d5446055de90aeca1fc749c857c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815684328&rft_id=info:pmid/&rft_ieee_id=10121335&rfr_iscdi=true