Loading…
LDM3D: Latent Diffusion Model for 3D
This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, a...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gabriela Ben Melech Stan Wofk, Diana Fox, Scottie Redden, Alex Saxton, Will Yu, Jean Aflalo, Estelle Shao-Yen Tseng Nonato, Fabio Muller, Matthias Lal, Vasudev |
description | This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, and validated through extensive experiments. We also develop an application called DepthFusion, which uses the generated RGB images and depth maps to create immersive and interactive 360-degree-view experiences using TouchDesigner. This technology has the potential to transform a wide range of industries, from entertainment and gaming to architecture and design. Overall, this paper presents a significant contribution to the field of generative AI and computer vision, and showcases the potential of LDM3D and DepthFusion to revolutionize content creation and digital experiences. A short video summarizing the approach can be found at https://t.ly/tdi2. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2815836634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815836634</sourcerecordid><originalsourceid>FETCH-proquest_journals_28158366343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8XHxNXaxUvBJLEnNK1FwyUxLKy3OzM9T8M1PSc1RSMsvUjB24WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ1MLYzMzYxNj4lQBAA2mLPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815836634</pqid></control><display><type>article</type><title>LDM3D: Latent Diffusion Model for 3D</title><source>Publicly Available Content (ProQuest)</source><creator>Gabriela Ben Melech Stan ; Wofk, Diana ; Fox, Scottie ; Redden, Alex ; Saxton, Will ; Yu, Jean ; Aflalo, Estelle ; Shao-Yen Tseng ; Nonato, Fabio ; Muller, Matthias ; Lal, Vasudev</creator><creatorcontrib>Gabriela Ben Melech Stan ; Wofk, Diana ; Fox, Scottie ; Redden, Alex ; Saxton, Will ; Yu, Jean ; Aflalo, Estelle ; Shao-Yen Tseng ; Nonato, Fabio ; Muller, Matthias ; Lal, Vasudev</creatorcontrib><description>This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, and validated through extensive experiments. We also develop an application called DepthFusion, which uses the generated RGB images and depth maps to create immersive and interactive 360-degree-view experiences using TouchDesigner. This technology has the potential to transform a wide range of industries, from entertainment and gaming to architecture and design. Overall, this paper presents a significant contribution to the field of generative AI and computer vision, and showcases the potential of LDM3D and DepthFusion to revolutionize content creation and digital experiences. A short video summarizing the approach can be found at https://t.ly/tdi2.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Color imagery ; Computer vision ; Three dimensional models ; Video data</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2815836634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gabriela Ben Melech Stan</creatorcontrib><creatorcontrib>Wofk, Diana</creatorcontrib><creatorcontrib>Fox, Scottie</creatorcontrib><creatorcontrib>Redden, Alex</creatorcontrib><creatorcontrib>Saxton, Will</creatorcontrib><creatorcontrib>Yu, Jean</creatorcontrib><creatorcontrib>Aflalo, Estelle</creatorcontrib><creatorcontrib>Shao-Yen Tseng</creatorcontrib><creatorcontrib>Nonato, Fabio</creatorcontrib><creatorcontrib>Muller, Matthias</creatorcontrib><creatorcontrib>Lal, Vasudev</creatorcontrib><title>LDM3D: Latent Diffusion Model for 3D</title><title>arXiv.org</title><description>This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, and validated through extensive experiments. We also develop an application called DepthFusion, which uses the generated RGB images and depth maps to create immersive and interactive 360-degree-view experiences using TouchDesigner. This technology has the potential to transform a wide range of industries, from entertainment and gaming to architecture and design. Overall, this paper presents a significant contribution to the field of generative AI and computer vision, and showcases the potential of LDM3D and DepthFusion to revolutionize content creation and digital experiences. A short video summarizing the approach can be found at https://t.ly/tdi2.</description><subject>Color imagery</subject><subject>Computer vision</subject><subject>Three dimensional models</subject><subject>Video data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8XHxNXaxUvBJLEnNK1FwyUxLKy3OzM9T8M1PSc1RSMsvUjB24WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLQ1MLYzMzYxNj4lQBAA2mLPE</recordid><startdate>20230521</startdate><enddate>20230521</enddate><creator>Gabriela Ben Melech Stan</creator><creator>Wofk, Diana</creator><creator>Fox, Scottie</creator><creator>Redden, Alex</creator><creator>Saxton, Will</creator><creator>Yu, Jean</creator><creator>Aflalo, Estelle</creator><creator>Shao-Yen Tseng</creator><creator>Nonato, Fabio</creator><creator>Muller, Matthias</creator><creator>Lal, Vasudev</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230521</creationdate><title>LDM3D: Latent Diffusion Model for 3D</title><author>Gabriela Ben Melech Stan ; Wofk, Diana ; Fox, Scottie ; Redden, Alex ; Saxton, Will ; Yu, Jean ; Aflalo, Estelle ; Shao-Yen Tseng ; Nonato, Fabio ; Muller, Matthias ; Lal, Vasudev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28158366343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Color imagery</topic><topic>Computer vision</topic><topic>Three dimensional models</topic><topic>Video data</topic><toplevel>online_resources</toplevel><creatorcontrib>Gabriela Ben Melech Stan</creatorcontrib><creatorcontrib>Wofk, Diana</creatorcontrib><creatorcontrib>Fox, Scottie</creatorcontrib><creatorcontrib>Redden, Alex</creatorcontrib><creatorcontrib>Saxton, Will</creatorcontrib><creatorcontrib>Yu, Jean</creatorcontrib><creatorcontrib>Aflalo, Estelle</creatorcontrib><creatorcontrib>Shao-Yen Tseng</creatorcontrib><creatorcontrib>Nonato, Fabio</creatorcontrib><creatorcontrib>Muller, Matthias</creatorcontrib><creatorcontrib>Lal, Vasudev</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriela Ben Melech Stan</au><au>Wofk, Diana</au><au>Fox, Scottie</au><au>Redden, Alex</au><au>Saxton, Will</au><au>Yu, Jean</au><au>Aflalo, Estelle</au><au>Shao-Yen Tseng</au><au>Nonato, Fabio</au><au>Muller, Matthias</au><au>Lal, Vasudev</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>LDM3D: Latent Diffusion Model for 3D</atitle><jtitle>arXiv.org</jtitle><date>2023-05-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This research paper proposes a Latent Diffusion Model for 3D (LDM3D) that generates both image and depth map data from a given text prompt, allowing users to generate RGBD images from text prompts. The LDM3D model is fine-tuned on a dataset of tuples containing an RGB image, depth map and caption, and validated through extensive experiments. We also develop an application called DepthFusion, which uses the generated RGB images and depth maps to create immersive and interactive 360-degree-view experiences using TouchDesigner. This technology has the potential to transform a wide range of industries, from entertainment and gaming to architecture and design. Overall, this paper presents a significant contribution to the field of generative AI and computer vision, and showcases the potential of LDM3D and DepthFusion to revolutionize content creation and digital experiences. A short video summarizing the approach can be found at https://t.ly/tdi2.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2815836634 |
source | Publicly Available Content (ProQuest) |
subjects | Color imagery Computer vision Three dimensional models Video data |
title | LDM3D: Latent Diffusion Model for 3D |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T04%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=LDM3D:%20Latent%20Diffusion%20Model%20for%203D&rft.jtitle=arXiv.org&rft.au=Gabriela%20Ben%20Melech%20Stan&rft.date=2023-05-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2815836634%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28158366343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815836634&rft_id=info:pmid/&rfr_iscdi=true |