Loading…
δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells
Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In t...
Saved in:
Published in: | Advanced optical materials 2023-05, Vol.11 (10), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 11 |
creator | Zhu, Helong Wu, Wenping Wu, Yanjie Zhang, Dezhong Zhan, Hongmei Cheng, Yanxiang Wang, Lixiang Qin, Chuanjiang |
description | Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs.
On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive. |
doi_str_mv | 10.1002/adom.202202827 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2815846862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815846862</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-5d951adceb6d85b79288370a8a55fed2856bb745422ccb162318b09760783c6b3</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsNTeer3gdeoesofcGaNVoaWF6vWym2w0JSd3U0rvfAQfxufwIXwSEypFGPjnZ2b-gQ-AS4ymGCFyrbOmmhJE-pJEnIARwRELMBL49F9_DibebxBCvaFRKEbg5vvr5-Nz9aa9hQtd61db2bqDTQ5n8crcOgrzxsG1rYrO6dq32g3jdVNqBxNblv4CnOW69Hbyp2PwMrt_Th6D-fLhKYnnQUsoFQHLIoZ1llrDM8mMiIiUVCAtNWO5zYhk3BgRspCQNDWYE4qlQZHgSEiackPH4OqQ27rmfWt9pzbN1tX9S0UkZjLksj8ag-iwtStKu1etKyrt9gojNVBSAyV1pKTiu-Xi6OgvHTVc1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815846862</pqid></control><display><type>article</type><title>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhu, Helong ; Wu, Wenping ; Wu, Yanjie ; Zhang, Dezhong ; Zhan, Hongmei ; Cheng, Yanxiang ; Wang, Lixiang ; Qin, Chuanjiang</creator><creatorcontrib>Zhu, Helong ; Wu, Wenping ; Wu, Yanjie ; Zhang, Dezhong ; Zhan, Hongmei ; Cheng, Yanxiang ; Wang, Lixiang ; Qin, Chuanjiang</creatorcontrib><description>Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs.
On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202827</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bulk density ; Carrier density ; Carrier transport ; Crystal defects ; defect passivation ; Energy conversion efficiency ; FAPbBr 3 solar cells ; Materials science ; Optics ; Perovskites ; Phosphine oxide ; Phosphonates ; Photovoltaic cells ; semitransparent ; Solar cells ; δ‐phase</subject><ispartof>Advanced optical materials, 2023-05, Vol.11 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6927-2544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Helong</creatorcontrib><creatorcontrib>Wu, Wenping</creatorcontrib><creatorcontrib>Wu, Yanjie</creatorcontrib><creatorcontrib>Zhang, Dezhong</creatorcontrib><creatorcontrib>Zhan, Hongmei</creatorcontrib><creatorcontrib>Cheng, Yanxiang</creatorcontrib><creatorcontrib>Wang, Lixiang</creatorcontrib><creatorcontrib>Qin, Chuanjiang</creatorcontrib><title>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</title><title>Advanced optical materials</title><description>Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs.
On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.</description><subject>Bulk density</subject><subject>Carrier density</subject><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>defect passivation</subject><subject>Energy conversion efficiency</subject><subject>FAPbBr 3 solar cells</subject><subject>Materials science</subject><subject>Optics</subject><subject>Perovskites</subject><subject>Phosphine oxide</subject><subject>Phosphonates</subject><subject>Photovoltaic cells</subject><subject>semitransparent</subject><subject>Solar cells</subject><subject>δ‐phase</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKw0AQhhdRsNTeer3gdeoesofcGaNVoaWF6vWym2w0JSd3U0rvfAQfxufwIXwSEypFGPjnZ2b-gQ-AS4ymGCFyrbOmmhJE-pJEnIARwRELMBL49F9_DibebxBCvaFRKEbg5vvr5-Nz9aa9hQtd61db2bqDTQ5n8crcOgrzxsG1rYrO6dq32g3jdVNqBxNblv4CnOW69Hbyp2PwMrt_Th6D-fLhKYnnQUsoFQHLIoZ1llrDM8mMiIiUVCAtNWO5zYhk3BgRspCQNDWYE4qlQZHgSEiackPH4OqQ27rmfWt9pzbN1tX9S0UkZjLksj8ag-iwtStKu1etKyrt9gojNVBSAyV1pKTiu-Xi6OgvHTVc1Q</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Zhu, Helong</creator><creator>Wu, Wenping</creator><creator>Wu, Yanjie</creator><creator>Zhang, Dezhong</creator><creator>Zhan, Hongmei</creator><creator>Cheng, Yanxiang</creator><creator>Wang, Lixiang</creator><creator>Qin, Chuanjiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6927-2544</orcidid></search><sort><creationdate>20230519</creationdate><title>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</title><author>Zhu, Helong ; Wu, Wenping ; Wu, Yanjie ; Zhang, Dezhong ; Zhan, Hongmei ; Cheng, Yanxiang ; Wang, Lixiang ; Qin, Chuanjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-5d951adceb6d85b79288370a8a55fed2856bb745422ccb162318b09760783c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bulk density</topic><topic>Carrier density</topic><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>defect passivation</topic><topic>Energy conversion efficiency</topic><topic>FAPbBr 3 solar cells</topic><topic>Materials science</topic><topic>Optics</topic><topic>Perovskites</topic><topic>Phosphine oxide</topic><topic>Phosphonates</topic><topic>Photovoltaic cells</topic><topic>semitransparent</topic><topic>Solar cells</topic><topic>δ‐phase</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Helong</creatorcontrib><creatorcontrib>Wu, Wenping</creatorcontrib><creatorcontrib>Wu, Yanjie</creatorcontrib><creatorcontrib>Zhang, Dezhong</creatorcontrib><creatorcontrib>Zhan, Hongmei</creatorcontrib><creatorcontrib>Cheng, Yanxiang</creatorcontrib><creatorcontrib>Wang, Lixiang</creatorcontrib><creatorcontrib>Qin, Chuanjiang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Helong</au><au>Wu, Wenping</au><au>Wu, Yanjie</au><au>Zhang, Dezhong</au><au>Zhan, Hongmei</au><au>Cheng, Yanxiang</au><au>Wang, Lixiang</au><au>Qin, Chuanjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</atitle><jtitle>Advanced optical materials</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs.
On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202827</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6927-2544</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2023-05, Vol.11 (10), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2815846862 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bulk density Carrier density Carrier transport Crystal defects defect passivation Energy conversion efficiency FAPbBr 3 solar cells Materials science Optics Perovskites Phosphine oxide Phosphonates Photovoltaic cells semitransparent Solar cells δ‐phase |
title | δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B4%E2%80%90Phase%20Management%20of%20FAPbBr3%20for%20Semitransparent%20Solar%20Cells&rft.jtitle=Advanced%20optical%20materials&rft.au=Zhu,%20Helong&rft.date=2023-05-19&rft.volume=11&rft.issue=10&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202827&rft_dat=%3Cproquest_wiley%3E2815846862%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-5d951adceb6d85b79288370a8a55fed2856bb745422ccb162318b09760783c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815846862&rft_id=info:pmid/&rfr_iscdi=true |