Loading…

δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells

Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In t...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2023-05, Vol.11 (10), p.n/a
Main Authors: Zhu, Helong, Wu, Wenping, Wu, Yanjie, Zhang, Dezhong, Zhan, Hongmei, Cheng, Yanxiang, Wang, Lixiang, Qin, Chuanjiang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced optical materials
container_volume 11
creator Zhu, Helong
Wu, Wenping
Wu, Yanjie
Zhang, Dezhong
Zhan, Hongmei
Cheng, Yanxiang
Wang, Lixiang
Qin, Chuanjiang
description Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs. On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.
doi_str_mv 10.1002/adom.202202827
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2815846862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815846862</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2337-5d951adceb6d85b79288370a8a55fed2856bb745422ccb162318b09760783c6b3</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsNTeer3gdeoesofcGaNVoaWF6vWym2w0JSd3U0rvfAQfxufwIXwSEypFGPjnZ2b-gQ-AS4ymGCFyrbOmmhJE-pJEnIARwRELMBL49F9_DibebxBCvaFRKEbg5vvr5-Nz9aa9hQtd61db2bqDTQ5n8crcOgrzxsG1rYrO6dq32g3jdVNqBxNblv4CnOW69Hbyp2PwMrt_Th6D-fLhKYnnQUsoFQHLIoZ1llrDM8mMiIiUVCAtNWO5zYhk3BgRspCQNDWYE4qlQZHgSEiackPH4OqQ27rmfWt9pzbN1tX9S0UkZjLksj8ag-iwtStKu1etKyrt9gojNVBSAyV1pKTiu-Xi6OgvHTVc1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815846862</pqid></control><display><type>article</type><title>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhu, Helong ; Wu, Wenping ; Wu, Yanjie ; Zhang, Dezhong ; Zhan, Hongmei ; Cheng, Yanxiang ; Wang, Lixiang ; Qin, Chuanjiang</creator><creatorcontrib>Zhu, Helong ; Wu, Wenping ; Wu, Yanjie ; Zhang, Dezhong ; Zhan, Hongmei ; Cheng, Yanxiang ; Wang, Lixiang ; Qin, Chuanjiang</creatorcontrib><description>Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs. On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202827</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bulk density ; Carrier density ; Carrier transport ; Crystal defects ; defect passivation ; Energy conversion efficiency ; FAPbBr 3 solar cells ; Materials science ; Optics ; Perovskites ; Phosphine oxide ; Phosphonates ; Photovoltaic cells ; semitransparent ; Solar cells ; δ‐phase</subject><ispartof>Advanced optical materials, 2023-05, Vol.11 (10), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6927-2544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Helong</creatorcontrib><creatorcontrib>Wu, Wenping</creatorcontrib><creatorcontrib>Wu, Yanjie</creatorcontrib><creatorcontrib>Zhang, Dezhong</creatorcontrib><creatorcontrib>Zhan, Hongmei</creatorcontrib><creatorcontrib>Cheng, Yanxiang</creatorcontrib><creatorcontrib>Wang, Lixiang</creatorcontrib><creatorcontrib>Qin, Chuanjiang</creatorcontrib><title>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</title><title>Advanced optical materials</title><description>Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs. On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.</description><subject>Bulk density</subject><subject>Carrier density</subject><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>defect passivation</subject><subject>Energy conversion efficiency</subject><subject>FAPbBr 3 solar cells</subject><subject>Materials science</subject><subject>Optics</subject><subject>Perovskites</subject><subject>Phosphine oxide</subject><subject>Phosphonates</subject><subject>Photovoltaic cells</subject><subject>semitransparent</subject><subject>Solar cells</subject><subject>δ‐phase</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKw0AQhhdRsNTeer3gdeoesofcGaNVoaWF6vWym2w0JSd3U0rvfAQfxufwIXwSEypFGPjnZ2b-gQ-AS4ymGCFyrbOmmhJE-pJEnIARwRELMBL49F9_DibebxBCvaFRKEbg5vvr5-Nz9aa9hQtd61db2bqDTQ5n8crcOgrzxsG1rYrO6dq32g3jdVNqBxNblv4CnOW69Hbyp2PwMrt_Th6D-fLhKYnnQUsoFQHLIoZ1llrDM8mMiIiUVCAtNWO5zYhk3BgRspCQNDWYE4qlQZHgSEiackPH4OqQ27rmfWt9pzbN1tX9S0UkZjLksj8ag-iwtStKu1etKyrt9gojNVBSAyV1pKTiu-Xi6OgvHTVc1Q</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Zhu, Helong</creator><creator>Wu, Wenping</creator><creator>Wu, Yanjie</creator><creator>Zhang, Dezhong</creator><creator>Zhan, Hongmei</creator><creator>Cheng, Yanxiang</creator><creator>Wang, Lixiang</creator><creator>Qin, Chuanjiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6927-2544</orcidid></search><sort><creationdate>20230519</creationdate><title>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</title><author>Zhu, Helong ; Wu, Wenping ; Wu, Yanjie ; Zhang, Dezhong ; Zhan, Hongmei ; Cheng, Yanxiang ; Wang, Lixiang ; Qin, Chuanjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2337-5d951adceb6d85b79288370a8a55fed2856bb745422ccb162318b09760783c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bulk density</topic><topic>Carrier density</topic><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>defect passivation</topic><topic>Energy conversion efficiency</topic><topic>FAPbBr 3 solar cells</topic><topic>Materials science</topic><topic>Optics</topic><topic>Perovskites</topic><topic>Phosphine oxide</topic><topic>Phosphonates</topic><topic>Photovoltaic cells</topic><topic>semitransparent</topic><topic>Solar cells</topic><topic>δ‐phase</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Helong</creatorcontrib><creatorcontrib>Wu, Wenping</creatorcontrib><creatorcontrib>Wu, Yanjie</creatorcontrib><creatorcontrib>Zhang, Dezhong</creatorcontrib><creatorcontrib>Zhan, Hongmei</creatorcontrib><creatorcontrib>Cheng, Yanxiang</creatorcontrib><creatorcontrib>Wang, Lixiang</creatorcontrib><creatorcontrib>Qin, Chuanjiang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Helong</au><au>Wu, Wenping</au><au>Wu, Yanjie</au><au>Zhang, Dezhong</au><au>Zhan, Hongmei</au><au>Cheng, Yanxiang</au><au>Wang, Lixiang</au><au>Qin, Chuanjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells</atitle><jtitle>Advanced optical materials</jtitle><date>2023-05-19</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Formamidinium lead bromide (FAPbBr3) perovskite owing to suitable wide band gap has promising application in the fields of semitransparent and tandem solar cells. However, the effect of photoinactive δ phase (δ‐FAPbBr3) on the film and device properties is still unclear and rarely investigated. In this work, the authors find that the growth of δ‐FAPbBr3 has a strong relationship with the property of the underlayer. On the hydrophilic underlayer, crystalline δ‐FAPbBr3 is uniformly distributed in the bulk of the α‐FAPbBr3 film, which has a lower defect density and better carrier transport. A power conversion efficiency of 9.12% is achieved by the management of δ‐FAPbBr3 and using a phosphonate/phosphine oxide dyad additive, which is the highest value among the inverted FAPbBr3‐based perovskite solar cells (PSCs). Moreover, the light utilization efficiency of a semitransparent device reaches 3.15%. This work provides new insights and methods for the realization of high‐performance FAPbBr3‐based PSCs. On the hydrophilic underlayer, δ phase of formamidinium lead bromide (δ‐FAPbBr3) crystals have a uniform distribution, resulting in better carrier transport and lower defect density. FAPbBr3 solar cell with power conversion efficiency of 9.12% and semitransparent solar cell with light utilization efficiency of 3.14% are realized by management of δ‐FAPbBr3 and using phosphonate/phosphine oxide dyad additive.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202827</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6927-2544</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-05, Vol.11 (10), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2815846862
source Wiley-Blackwell Read & Publish Collection
subjects Bulk density
Carrier density
Carrier transport
Crystal defects
defect passivation
Energy conversion efficiency
FAPbBr 3 solar cells
Materials science
Optics
Perovskites
Phosphine oxide
Phosphonates
Photovoltaic cells
semitransparent
Solar cells
δ‐phase
title δ‐Phase Management of FAPbBr3 for Semitransparent Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B4%E2%80%90Phase%20Management%20of%20FAPbBr3%20for%20Semitransparent%20Solar%20Cells&rft.jtitle=Advanced%20optical%20materials&rft.au=Zhu,%20Helong&rft.date=2023-05-19&rft.volume=11&rft.issue=10&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202827&rft_dat=%3Cproquest_wiley%3E2815846862%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2337-5d951adceb6d85b79288370a8a55fed2856bb745422ccb162318b09760783c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815846862&rft_id=info:pmid/&rfr_iscdi=true