Loading…

Simulating dynamic fire regime and vegetation change in a warming Siberia

Background Climate change is expected to increase fire activity across the circumboreal zone, including central Siberia. However, few studies have quantitatively assessed potential changes in fire regime characteristics, or considered possible spatial variation in the magnitude of change. Moreover,...

Full description

Saved in:
Bibliographic Details
Published in:Fire ecology 2023-12, Vol.19 (1), p.33, Article 33
Main Authors: Williams, Neil G., Lucash, Melissa S., Ouellette, Marc R., Brussel, Thomas, Gustafson, Eric J., Weiss, Shelby A., Sturtevant, Brian R., Schepaschenko, Dmitry G., Shvidenko, Anatoly Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Climate change is expected to increase fire activity across the circumboreal zone, including central Siberia. However, few studies have quantitatively assessed potential changes in fire regime characteristics, or considered possible spatial variation in the magnitude of change. Moreover, while simulations indicate that changes in climate are likely to drive major shifts in Siberian vegetation, knowledge of future forest dynamics under the joint influence of changes in climate and fire regimes remains largely theoretical. We used the forest landscape model, LANDIS-II, with PnET-Succession and the BFOLDS fire extension to simulate changes in vegetation and fire regime characteristics under four alternative climate scenarios in three 10,000-km 2 study landscapes distributed across a large latitudinal gradient in lowland central Siberia. We evaluated vegetation change using the fire life history strategies adopted by forest tree species: fire resisters, fire avoiders, and fire endurers. Results Annual burned area, the number of fires per year, fire size, and fire intensity all increased under climate change. The relative increase in fire activity was greatest in the northernmost study landscape, leading to a reduction in the difference in fire rotation period between study landscapes. Although the number of fires per year increased progressively with the magnitude of climate change, mean fire size peaked under mild or moderate climate warming in each of our study landscapes, suggesting that fuel limitations and past fire perimeters will feed back to reduce individual fire extent under extreme warming, relative to less extreme warming scenarios. In the Southern and Mid-taiga landscapes, we observed a major shift from fire resister-dominated forests to forests dominated by broadleaved deciduous fire endurers ( Betula and Populus genera) under moderate and extreme climate warming scenarios, likely associated with the substantial increase in fire activity. These changes were accompanied by a major decrease in average cohort age and total vegetation biomass across the simulation landscapes. Conclusions Our results imply that climate change will greatly increase fire activity and reduce spatial heterogeneity in fire regime characteristics across central Siberia. Potential ecological consequences include a widespread shift toward forests dominated by broadleaved deciduous species that employ a fire endurer strategy to persist in an increasingly fire-prone
ISSN:1933-9747
1933-9747
DOI:10.1186/s42408-023-00188-1