Loading…
Ultra-compact on-chip meta-waveguide phase modulator based on split ring magnetic resonance
With the development of photonic integration technology, meta-waveguides have become a new research hotspot. They have broken through the theoretical diffraction limit by virtue of the strong electromagnetic manipulation ability of the metasurface and the strong electromagnetic field limitation and...
Saved in:
Published in: | Applied optics (2004) 2023-05, Vol.62 (15), p.4060 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the development of photonic integration technology, meta-waveguides have become a new research hotspot. They have broken through the theoretical diffraction limit by virtue of the strong electromagnetic manipulation ability of the metasurface and the strong electromagnetic field limitation and guidance ability of the waveguide. However, the reported meta-waveguides lack research on dynamic modulation. Therefore, we analyze the modulation effect of the metasurface on the optical field in the waveguide and design an ultra-compact on-chip meta-waveguide phase modulator using split ring magnetic resonance. It has a very short modulation length of only 3.65 µm, wide modulation bandwidth of 116.8 GHz, and low energy consumption of 263.49 fJ/bit. By optimizing the structure, the energy consumption can be further reduced to 90.69 fJ/bit. Meta-waveguides provide a promising method for the design of integrated photonic devices. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.487760 |