Loading…

Detection of diabetes using tongue image analysis

Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome...

Full description

Saved in:
Bibliographic Details
Main Authors: Sridhar, B., Kumar, C. Ashok, Anjaneyulu, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2492
creator Sridhar, B.
Kumar, C. Ashok
Anjaneyulu, P.
description Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.
doi_str_mv 10.1063/5.0113319
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2817114609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817114609</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-e4138a7c1f51689e719ac427ea62a30e56e49467c5b5a290d9621603b5e111fb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEcX_oOAO6Fjbp7NUsYnDLhRcBfS9rZkGNvapML8ezvMgDtXhwPfvZxzCLkGtgSmxZ1aMgAhwJ6QDJSC3GjQpyRjzMqcS_F5Ti5i3DDGrTFFRuABE1Yp9B3tG1oHX84-0imGrqWp79oJafjyLVLf-e0uhnhJzhq_jXh11AX5eHp8X73k67fn19X9Oh9AFylHCaLwpoJGzd6iAesryQ16zb1gqDRKK7WpVKk8t6y2moNmolQIAE0pFuTm8HcY--8JY3KbfhrnENHxAgyA1MzO1O2BilVIft_DDeMceNy5n350yh3ncEPd_AcDc_v9_g7ELy-5X7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2817114609</pqid></control><display><type>conference_proceeding</type><title>Detection of diabetes using tongue image analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sridhar, B. ; Kumar, C. Ashok ; Anjaneyulu, P.</creator><contributor>Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</contributor><creatorcontrib>Sridhar, B. ; Kumar, C. Ashok ; Anjaneyulu, P. ; Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</creatorcontrib><description>Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113319</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Diagnosis ; Flaw detection ; Image analysis ; Image segmentation ; Pictures ; Tongue</subject><ispartof>AIP conference proceedings, 2023, Vol.2492 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23921,23922,25131,27915,27916</link.rule.ids></links><search><contributor>Reddy, M Venkateswar</contributor><contributor>Gupta, M Satyanarayana</contributor><contributor>Anand, A Vivek</contributor><creatorcontrib>Sridhar, B.</creatorcontrib><creatorcontrib>Kumar, C. Ashok</creatorcontrib><creatorcontrib>Anjaneyulu, P.</creatorcontrib><title>Detection of diabetes using tongue image analysis</title><title>AIP conference proceedings</title><description>Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.</description><subject>Algorithms</subject><subject>Diagnosis</subject><subject>Flaw detection</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Pictures</subject><subject>Tongue</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLxDAUhYMoWEcX_oOAO6Fjbp7NUsYnDLhRcBfS9rZkGNvapML8ezvMgDtXhwPfvZxzCLkGtgSmxZ1aMgAhwJ6QDJSC3GjQpyRjzMqcS_F5Ti5i3DDGrTFFRuABE1Yp9B3tG1oHX84-0imGrqWp79oJafjyLVLf-e0uhnhJzhq_jXh11AX5eHp8X73k67fn19X9Oh9AFylHCaLwpoJGzd6iAesryQ16zb1gqDRKK7WpVKk8t6y2moNmolQIAE0pFuTm8HcY--8JY3KbfhrnENHxAgyA1MzO1O2BilVIft_DDeMceNy5n350yh3ncEPd_AcDc_v9_g7ELy-5X7w</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Sridhar, B.</creator><creator>Kumar, C. Ashok</creator><creator>Anjaneyulu, P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230522</creationdate><title>Detection of diabetes using tongue image analysis</title><author>Sridhar, B. ; Kumar, C. Ashok ; Anjaneyulu, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-e4138a7c1f51689e719ac427ea62a30e56e49467c5b5a290d9621603b5e111fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Diagnosis</topic><topic>Flaw detection</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Pictures</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sridhar, B.</creatorcontrib><creatorcontrib>Kumar, C. Ashok</creatorcontrib><creatorcontrib>Anjaneyulu, P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridhar, B.</au><au>Kumar, C. Ashok</au><au>Anjaneyulu, P.</au><au>Reddy, M Venkateswar</au><au>Gupta, M Satyanarayana</au><au>Anand, A Vivek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of diabetes using tongue image analysis</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-22</date><risdate>2023</risdate><volume>2492</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113319</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2492 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2817114609
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Diagnosis
Flaw detection
Image analysis
Image segmentation
Pictures
Tongue
title Detection of diabetes using tongue image analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20diabetes%20using%20tongue%20image%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Sridhar,%20B.&rft.date=2023-05-22&rft.volume=2492&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113319&rft_dat=%3Cproquest_scita%3E2817114609%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-e4138a7c1f51689e719ac427ea62a30e56e49467c5b5a290d9621603b5e111fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817114609&rft_id=info:pmid/&rfr_iscdi=true