Loading…
Detection of diabetes using tongue image analysis
Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2492 |
creator | Sridhar, B. Kumar, C. Ashok Anjaneyulu, P. |
description | Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared. |
doi_str_mv | 10.1063/5.0113319 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2817114609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817114609</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-e4138a7c1f51689e719ac427ea62a30e56e49467c5b5a290d9621603b5e111fb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEcX_oOAO6Fjbp7NUsYnDLhRcBfS9rZkGNvapML8ezvMgDtXhwPfvZxzCLkGtgSmxZ1aMgAhwJ6QDJSC3GjQpyRjzMqcS_F5Ti5i3DDGrTFFRuABE1Yp9B3tG1oHX84-0imGrqWp79oJafjyLVLf-e0uhnhJzhq_jXh11AX5eHp8X73k67fn19X9Oh9AFylHCaLwpoJGzd6iAesryQ16zb1gqDRKK7WpVKk8t6y2moNmolQIAE0pFuTm8HcY--8JY3KbfhrnENHxAgyA1MzO1O2BilVIft_DDeMceNy5n350yh3ncEPd_AcDc_v9_g7ELy-5X7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2817114609</pqid></control><display><type>conference_proceeding</type><title>Detection of diabetes using tongue image analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Sridhar, B. ; Kumar, C. Ashok ; Anjaneyulu, P.</creator><contributor>Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</contributor><creatorcontrib>Sridhar, B. ; Kumar, C. Ashok ; Anjaneyulu, P. ; Reddy, M Venkateswar ; Gupta, M Satyanarayana ; Anand, A Vivek</creatorcontrib><description>Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113319</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Diagnosis ; Flaw detection ; Image analysis ; Image segmentation ; Pictures ; Tongue</subject><ispartof>AIP conference proceedings, 2023, Vol.2492 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23921,23922,25131,27915,27916</link.rule.ids></links><search><contributor>Reddy, M Venkateswar</contributor><contributor>Gupta, M Satyanarayana</contributor><contributor>Anand, A Vivek</contributor><creatorcontrib>Sridhar, B.</creatorcontrib><creatorcontrib>Kumar, C. Ashok</creatorcontrib><creatorcontrib>Anjaneyulu, P.</creatorcontrib><title>Detection of diabetes using tongue image analysis</title><title>AIP conference proceedings</title><description>Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.</description><subject>Algorithms</subject><subject>Diagnosis</subject><subject>Flaw detection</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Pictures</subject><subject>Tongue</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLxDAUhYMoWEcX_oOAO6Fjbp7NUsYnDLhRcBfS9rZkGNvapML8ezvMgDtXhwPfvZxzCLkGtgSmxZ1aMgAhwJ6QDJSC3GjQpyRjzMqcS_F5Ti5i3DDGrTFFRuABE1Yp9B3tG1oHX84-0imGrqWp79oJafjyLVLf-e0uhnhJzhq_jXh11AX5eHp8X73k67fn19X9Oh9AFylHCaLwpoJGzd6iAesryQ16zb1gqDRKK7WpVKk8t6y2moNmolQIAE0pFuTm8HcY--8JY3KbfhrnENHxAgyA1MzO1O2BilVIft_DDeMceNy5n350yh3ncEPd_AcDc_v9_g7ELy-5X7w</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Sridhar, B.</creator><creator>Kumar, C. Ashok</creator><creator>Anjaneyulu, P.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230522</creationdate><title>Detection of diabetes using tongue image analysis</title><author>Sridhar, B. ; Kumar, C. Ashok ; Anjaneyulu, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-e4138a7c1f51689e719ac427ea62a30e56e49467c5b5a290d9621603b5e111fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Diagnosis</topic><topic>Flaw detection</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Pictures</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sridhar, B.</creatorcontrib><creatorcontrib>Kumar, C. Ashok</creatorcontrib><creatorcontrib>Anjaneyulu, P.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridhar, B.</au><au>Kumar, C. Ashok</au><au>Anjaneyulu, P.</au><au>Reddy, M Venkateswar</au><au>Gupta, M Satyanarayana</au><au>Anand, A Vivek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of diabetes using tongue image analysis</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-22</date><risdate>2023</risdate><volume>2492</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Tongue diagnosis is an essential part of diagnosing most illnesses, so tongue diagnosis has gained a lot of attention from experts. Tongue diagnosing is generally done by handling pictures of the tongue; however, this isn't done in Western medication. The objective of this paper is to overcome any barrier among Chinese and Western medication, just as improve the nature of division, so we proposed a consecutive strategy for preparing tongue pictures. The initial two kinds of quantitative highlights, chromatic and textural scales, are extricated from tongue pictures utilizing picture handling methods in the initial step of this system. The tongue's shape is extracted in the second shape detection process using an edge detector and an area increasing algorithm. The colour intensity extraction method is used to detect pimples and cracks in the third phase. The Level Set Algorithm produces excellent segmentation outcomes. Then the normal and abnormal tongue's mean and entropy values were compared.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113319</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2492 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2817114609 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Diagnosis Flaw detection Image analysis Image segmentation Pictures Tongue |
title | Detection of diabetes using tongue image analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A50%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20diabetes%20using%20tongue%20image%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Sridhar,%20B.&rft.date=2023-05-22&rft.volume=2492&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113319&rft_dat=%3Cproquest_scita%3E2817114609%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-e4138a7c1f51689e719ac427ea62a30e56e49467c5b5a290d9621603b5e111fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817114609&rft_id=info:pmid/&rfr_iscdi=true |