Loading…
Hypergraph regularity and random sampling
Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random s...
Saved in:
Published in: | Random structures & algorithms 2023-07, Vol.62 (4), p.956-1015 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43 |
container_end_page | 1015 |
container_issue | 4 |
container_start_page | 956 |
container_title | Random structures & algorithms |
container_volume | 62 |
creator | Joos, Felix Kim, Jaehoon Kühn, Daniela Osthus, Deryk |
description | Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira. |
doi_str_mv | 10.1002/rsa.21126 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2817231573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817231573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8iseoirT2OH1lWFbRIlZB4rC2ntkOqvLAbofw9LmHLZmYWZ2auDkL3BC8JxrDyQS-BEOAXaEZwLlPIiLw8zxmkuaRwjW5COGKMBQU6Q4vd2Ftfet1_Jt6WQ619dRoT3ZrEx9I1SdBNX1dteYuunK6Dvfvrc_Tx9Pi-2aX7l-3zZr1PD5QCTynX3ElNmOayMEAzbqRh2AjsuBXArDN5RgCMw5QXhWGUGWNEZmM4zYuMztHDdLf33ddgw0kdu8G38aUCSQRQwgSN1GKiDr4LwVunel812o-KYHU2oaIJ9WsisquJ_a5qO_4Pqte39bTxAye4Xko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817231573</pqid></control><display><type>article</type><title>Hypergraph regularity and random sampling</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Joos, Felix ; Kim, Jaehoon ; Kühn, Daniela ; Osthus, Deryk</creator><creatorcontrib>Joos, Felix ; Kim, Jaehoon ; Kühn, Daniela ; Osthus, Deryk</creatorcontrib><description>Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21126</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Combinatorial analysis ; Error analysis ; Graph theory ; hypergraph regularity ; property testing ; Random sampling ; Regularity ; Vertex sets</subject><ispartof>Random structures & algorithms, 2023-07, Vol.62 (4), p.956-1015</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43</citedby><cites>FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Joos, Felix</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Kühn, Daniela</creatorcontrib><creatorcontrib>Osthus, Deryk</creatorcontrib><title>Hypergraph regularity and random sampling</title><title>Random structures & algorithms</title><description>Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.</description><subject>Combinatorial analysis</subject><subject>Error analysis</subject><subject>Graph theory</subject><subject>hypergraph regularity</subject><subject>property testing</subject><subject>Random sampling</subject><subject>Regularity</subject><subject>Vertex sets</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8iseoirT2OH1lWFbRIlZB4rC2ntkOqvLAbofw9LmHLZmYWZ2auDkL3BC8JxrDyQS-BEOAXaEZwLlPIiLw8zxmkuaRwjW5COGKMBQU6Q4vd2Ftfet1_Jt6WQ619dRoT3ZrEx9I1SdBNX1dteYuunK6Dvfvrc_Tx9Pi-2aX7l-3zZr1PD5QCTynX3ElNmOayMEAzbqRh2AjsuBXArDN5RgCMw5QXhWGUGWNEZmM4zYuMztHDdLf33ddgw0kdu8G38aUCSQRQwgSN1GKiDr4LwVunel812o-KYHU2oaIJ9WsisquJ_a5qO_4Pqte39bTxAye4Xko</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Joos, Felix</creator><creator>Kim, Jaehoon</creator><creator>Kühn, Daniela</creator><creator>Osthus, Deryk</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202307</creationdate><title>Hypergraph regularity and random sampling</title><author>Joos, Felix ; Kim, Jaehoon ; Kühn, Daniela ; Osthus, Deryk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorial analysis</topic><topic>Error analysis</topic><topic>Graph theory</topic><topic>hypergraph regularity</topic><topic>property testing</topic><topic>Random sampling</topic><topic>Regularity</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joos, Felix</creatorcontrib><creatorcontrib>Kim, Jaehoon</creatorcontrib><creatorcontrib>Kühn, Daniela</creatorcontrib><creatorcontrib>Osthus, Deryk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joos, Felix</au><au>Kim, Jaehoon</au><au>Kühn, Daniela</au><au>Osthus, Deryk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypergraph regularity and random sampling</atitle><jtitle>Random structures & algorithms</jtitle><date>2023-07</date><risdate>2023</risdate><volume>62</volume><issue>4</issue><spage>956</spage><epage>1015</epage><pages>956-1015</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.21126</doi><tpages>60</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2023-07, Vol.62 (4), p.956-1015 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2817231573 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Combinatorial analysis Error analysis Graph theory hypergraph regularity property testing Random sampling Regularity Vertex sets |
title | Hypergraph regularity and random sampling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypergraph%20regularity%20and%20random%20sampling&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Joos,%20Felix&rft.date=2023-07&rft.volume=62&rft.issue=4&rft.spage=956&rft.epage=1015&rft.pages=956-1015&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21126&rft_dat=%3Cproquest_cross%3E2817231573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3326-36a6f8a15a68bd2346d8d50d70f6e725efd94122df036bbd535ddd74e983a6b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817231573&rft_id=info:pmid/&rfr_iscdi=true |