Loading…
Comparative analysis of reduced feature set based ML models for IDS
Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine L...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2773 |
creator | Jishiya, P. A. Swaraj, K. P. James, Ajay |
description | Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results. |
doi_str_mv | 10.1063/5.0138520 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2817827878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817827878</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-45089b5dc84ebbc611628464547be51fb20ed028bc789e390cff70b8477ad17b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B1ks3XHmX9Kqx4UMFbSDYJbGmbNdkt9N-70oI3TwPD877MPAhdE1gQEOUdXwApFadwgmaEc1JIQcQpmgFUrKCs_DpHFzmvAGglpZqhuo6b3iQzdDuPzdas97nLOAacvBtb73DwZhiTx9kP2Jo8bV4bvInOrzMOMeHlw_slOgtmnf3Vcc7R59PjR_1SNG_Py_q-KXoi1FAwDqqy3LWKeWtbQYigignGmbSek2ApeAdU2VaqypcVtCFIsIpJaRyRtpyjm0Nvn-L36POgV3FM081ZU0WkolJJNVG3Byq33TD9Fbe6T93GpL3exaS5PgrSvQv_wQT0r9G_QPkDGc1mOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2817827878</pqid></control><display><type>conference_proceeding</type><title>Comparative analysis of reduced feature set based ML models for IDS</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jishiya, P. A. ; Swaraj, K. P. ; James, Ajay</creator><contributor>Jaseena, K U ; Manzur Ali, P P ; Jasmine, P M</contributor><creatorcontrib>Jishiya, P. A. ; Swaraj, K. P. ; James, Ajay ; Jaseena, K U ; Manzur Ali, P P ; Jasmine, P M</creatorcontrib><description>Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0138520</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Anomalies ; Artificial neural networks ; Cybersecurity ; Deep learning ; Intrusion detection systems ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2773 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Jaseena, K U</contributor><contributor>Manzur Ali, P P</contributor><contributor>Jasmine, P M</contributor><creatorcontrib>Jishiya, P. A.</creatorcontrib><creatorcontrib>Swaraj, K. P.</creatorcontrib><creatorcontrib>James, Ajay</creatorcontrib><title>Comparative analysis of reduced feature set based ML models for IDS</title><title>AIP Conference Proceedings</title><description>Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B1ks3XHmX9Kqx4UMFbSDYJbGmbNdkt9N-70oI3TwPD877MPAhdE1gQEOUdXwApFadwgmaEc1JIQcQpmgFUrKCs_DpHFzmvAGglpZqhuo6b3iQzdDuPzdas97nLOAacvBtb73DwZhiTx9kP2Jo8bV4bvInOrzMOMeHlw_slOgtmnf3Vcc7R59PjR_1SNG_Py_q-KXoi1FAwDqqy3LWKeWtbQYigignGmbSek2ApeAdU2VaqypcVtCFIsIpJaRyRtpyjm0Nvn-L36POgV3FM081ZU0WkolJJNVG3Byq33TD9Fbe6T93GpL3exaS5PgrSvQv_wQT0r9G_QPkDGc1mOQ</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Jishiya, P. A.</creator><creator>Swaraj, K. P.</creator><creator>James, Ajay</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230523</creationdate><title>Comparative analysis of reduced feature set based ML models for IDS</title><author>Jishiya, P. A. ; Swaraj, K. P. ; James, Ajay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-45089b5dc84ebbc611628464547be51fb20ed028bc789e390cff70b8477ad17b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jishiya, P. A.</creatorcontrib><creatorcontrib>Swaraj, K. P.</creatorcontrib><creatorcontrib>James, Ajay</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jishiya, P. A.</au><au>Swaraj, K. P.</au><au>James, Ajay</au><au>Jaseena, K U</au><au>Manzur Ali, P P</au><au>Jasmine, P M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative analysis of reduced feature set based ML models for IDS</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-05-23</date><risdate>2023</risdate><volume>2773</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0138520</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2773 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2817827878 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Anomalies Artificial neural networks Cybersecurity Deep learning Intrusion detection systems Machine learning |
title | Comparative analysis of reduced feature set based ML models for IDS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20analysis%20of%20reduced%20feature%20set%20based%20ML%20models%20for%20IDS&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Jishiya,%20P.%20A.&rft.date=2023-05-23&rft.volume=2773&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0138520&rft_dat=%3Cproquest_scita%3E2817827878%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-45089b5dc84ebbc611628464547be51fb20ed028bc789e390cff70b8477ad17b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817827878&rft_id=info:pmid/&rfr_iscdi=true |