Loading…

Comparative analysis of reduced feature set based ML models for IDS

Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine L...

Full description

Saved in:
Bibliographic Details
Main Authors: Jishiya, P. A., Swaraj, K. P., James, Ajay
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2773
creator Jishiya, P. A.
Swaraj, K. P.
James, Ajay
description Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.
doi_str_mv 10.1063/5.0138520
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2817827878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817827878</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-45089b5dc84ebbc611628464547be51fb20ed028bc789e390cff70b8477ad17b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B1ks3XHmX9Kqx4UMFbSDYJbGmbNdkt9N-70oI3TwPD877MPAhdE1gQEOUdXwApFadwgmaEc1JIQcQpmgFUrKCs_DpHFzmvAGglpZqhuo6b3iQzdDuPzdas97nLOAacvBtb73DwZhiTx9kP2Jo8bV4bvInOrzMOMeHlw_slOgtmnf3Vcc7R59PjR_1SNG_Py_q-KXoi1FAwDqqy3LWKeWtbQYigignGmbSek2ApeAdU2VaqypcVtCFIsIpJaRyRtpyjm0Nvn-L36POgV3FM081ZU0WkolJJNVG3Byq33TD9Fbe6T93GpL3exaS5PgrSvQv_wQT0r9G_QPkDGc1mOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2817827878</pqid></control><display><type>conference_proceeding</type><title>Comparative analysis of reduced feature set based ML models for IDS</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Jishiya, P. A. ; Swaraj, K. P. ; James, Ajay</creator><contributor>Jaseena, K U ; Manzur Ali, P P ; Jasmine, P M</contributor><creatorcontrib>Jishiya, P. A. ; Swaraj, K. P. ; James, Ajay ; Jaseena, K U ; Manzur Ali, P P ; Jasmine, P M</creatorcontrib><description>Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0138520</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Anomalies ; Artificial neural networks ; Cybersecurity ; Deep learning ; Intrusion detection systems ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2773 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Jaseena, K U</contributor><contributor>Manzur Ali, P P</contributor><contributor>Jasmine, P M</contributor><creatorcontrib>Jishiya, P. A.</creatorcontrib><creatorcontrib>Swaraj, K. P.</creatorcontrib><creatorcontrib>James, Ajay</creatorcontrib><title>Comparative analysis of reduced feature set based ML models for IDS</title><title>AIP Conference Proceedings</title><description>Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Cybersecurity</subject><subject>Deep learning</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAm7B1ks3XHmX9Kqx4UMFbSDYJbGmbNdkt9N-70oI3TwPD877MPAhdE1gQEOUdXwApFadwgmaEc1JIQcQpmgFUrKCs_DpHFzmvAGglpZqhuo6b3iQzdDuPzdas97nLOAacvBtb73DwZhiTx9kP2Jo8bV4bvInOrzMOMeHlw_slOgtmnf3Vcc7R59PjR_1SNG_Py_q-KXoi1FAwDqqy3LWKeWtbQYigignGmbSek2ApeAdU2VaqypcVtCFIsIpJaRyRtpyjm0Nvn-L36POgV3FM081ZU0WkolJJNVG3Byq33TD9Fbe6T93GpL3exaS5PgrSvQv_wQT0r9G_QPkDGc1mOQ</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Jishiya, P. A.</creator><creator>Swaraj, K. P.</creator><creator>James, Ajay</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230523</creationdate><title>Comparative analysis of reduced feature set based ML models for IDS</title><author>Jishiya, P. A. ; Swaraj, K. P. ; James, Ajay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-45089b5dc84ebbc611628464547be51fb20ed028bc789e390cff70b8477ad17b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Cybersecurity</topic><topic>Deep learning</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jishiya, P. A.</creatorcontrib><creatorcontrib>Swaraj, K. P.</creatorcontrib><creatorcontrib>James, Ajay</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jishiya, P. A.</au><au>Swaraj, K. P.</au><au>James, Ajay</au><au>Jaseena, K U</au><au>Manzur Ali, P P</au><au>Jasmine, P M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative analysis of reduced feature set based ML models for IDS</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-05-23</date><risdate>2023</risdate><volume>2773</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Cyber-attacks targeting organisations and individuals are getting worse day by day. With the technological improve-ments, the principles used to launch attacks are also varied. Intrusion Detection System (IDS) is a network solution to detect attacks and anomalies in the network. Leveraging Machine Learning for developing an IDS can make it more powerful. This work aims at evaluating the performance of machine learning models for Intrusion Detection System built based on CART Algorithm, ID3Decision tree algorithm, Random forest algorithm with Convolutional Neural Network. The model is built using KDD Cup99 Dataset. In this work we perform Linear Correlation and Mutual Information feature selection algorithms for ML algorithms and for Convolutional Neural Network algorithm being a deep learning technique feature selection happens automatically. Analysing various parameters including F1-score, ID3 has shown better results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0138520</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2773 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2817827878
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Anomalies
Artificial neural networks
Cybersecurity
Deep learning
Intrusion detection systems
Machine learning
title Comparative analysis of reduced feature set based ML models for IDS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20analysis%20of%20reduced%20feature%20set%20based%20ML%20models%20for%20IDS&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Jishiya,%20P.%20A.&rft.date=2023-05-23&rft.volume=2773&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0138520&rft_dat=%3Cproquest_scita%3E2817827878%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p168t-45089b5dc84ebbc611628464547be51fb20ed028bc789e390cff70b8477ad17b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2817827878&rft_id=info:pmid/&rfr_iscdi=true