Loading…
Preparation of a Janus-polyvinylidene fluoride micro/nano fiber membrane by centrifugal spinning and investigation into its unidirectional water transfer and oil–water separation functions
Traditional oil–water separation membranes have a high energy consumption and complicated operation. To solve this problem, an asymmetric wetting polyvinylidene fluoride (PVDF) fiber membrane with a hydrophobic side and a hydrophilic side was prepared. Octamethylcyclotetrasiloxane was grafted onto o...
Saved in:
Published in: | Textile Research Journal 2023-06, Vol.93 (11-12), p.2894-2907 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traditional oil–water separation membranes have a high energy consumption and complicated operation. To solve this problem, an asymmetric wetting polyvinylidene fluoride (PVDF) fiber membrane with a hydrophobic side and a hydrophilic side was prepared. Octamethylcyclotetrasiloxane was grafted onto one side of a centrifugal spun PVDF fiber membrane by plasma initiation, and dopamine was sprayed on the other side of the fiber membrane. The Janus-PVDF fiber membrane prepared can separate a mixture of water and dibromoethane, a toluene–water emulsion and a mixture of n-hexane and water. The initial interception rates were 98.53% ± 1.31%, 98.52% ± 1.12% and 98.61% ± 1.23%, respectively. After five cycles of separation, the separation rates remained at 96.15% ± 1.25%, 95.02% ± 1.21% and 96.91% ± 1.42%, respectively. The Janus-PVDF fiber membrane has excellent unidirectional water transfer capability and possesses well-repeated separability. The preparation of its unique Janus structure also provides a new direction for the field of oil–water separation. |
---|---|
ISSN: | 0040-5175 1746-7748 |
DOI: | 10.1177/00405175221148265 |