Loading…
Geometrical significance of trajectory planning through polynomial equation – Customized RPPPRR model robot
The main aim of today’s research is to generate the trajectory from initial to goal that satisfies some objectives, like minimization of time interval, acceleration, Torque, by satisfying the manipulator’s kinematic and dynamic. To this purpose, synchronization of all active DOFs is an important fea...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2477 |
creator | Rath, Kali Charan Sahu, Supriya Nayak, Anshuman Pradhan, Suvikram Sharma, G. Avinash Munibara, Patro Pankajkumar |
description | The main aim of today’s research is to generate the trajectory from initial to goal that satisfies some objectives, like minimization of time interval, acceleration, Torque, by satisfying the manipulator’s kinematic and dynamic. To this purpose, synchronization of all active DOFs is an important feature of a trajectory planning system. To achieve motion with optimal smoothness, trajectories are executed by all actuators with the identical start and finish time in-starts. The path is made up of ordered loci of places in space that the robot must follow. Locally, the trajectory is defined and planned. Individual trajectories cover sections of the journey. It is often essential that quantities of trajectories merge seamlessly, ensuing in a trajectory design that completely considers the direction’s neighboring trajectories. When bits of trajectories must merge seamlessly, a single trajectory design must consider only the path’s nearby trajectories. A trajectory on the other hand comprises a path and a schedule for getting from initial point (A) to goal point (B). In this paper, the trajectories specified through cubic and quintic polynomial have tested for the 6-DOF RPPPRR customized robot model. Geometry of trajectory analysis through robotic software out put provides a satisfactory smooth trajectory generation through quintic polynomial trajectory over the cubic polynomial trajectory. |
doi_str_mv | 10.1063/5.0155187 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2818425334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818425334</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-1ccef2b8b8ce8041ee56c3ee8b40cc9744a4b784c987342655464d6799b1a1d3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWw4AaW2CGl2LEdO0tUQUGqRFV1wS5ynGnrKrFTx1mUFXfghpyElHY1T6P_Z_Q_QveUTCjJ2JOYECoEVfICjY6QyIxml2hESM6TlLPPa3TTdTtC0lxKNULNDHwDMVija9zZjbPrAZ0B7Nc4Br0DE3044LbWzlm3wXEbfL_Z4tbXB-cbO9hg3-tovcO_3z942ndxWH9BhZeLxWK5xI2voMbBlz7eoqu1rju4O88xWr2-rKZvyfxj9j59nictZSwm1BhYp6UqlQFFOAUQmWEAquTEmFxyrnkpFTe5koynmRA841Um87ykmlZsjB5OZ9vg9z10sdj5PrjhY5EqqngqGOOD6vGk6oyN_wGKNthGh0NBSXFssxDFuU32B6r2aTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2818425334</pqid></control><display><type>conference_proceeding</type><title>Geometrical significance of trajectory planning through polynomial equation – Customized RPPPRR model robot</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rath, Kali Charan ; Sahu, Supriya ; Nayak, Anshuman ; Pradhan, Suvikram ; Sharma, G. Avinash ; Munibara, Patro Pankajkumar</creator><contributor>Tara, Saikumar ; Balas, Valentina E. ; Avala, Raji Reddy ; Gimmadi, Srikanth ; Vuppula, Anil Kumar</contributor><creatorcontrib>Rath, Kali Charan ; Sahu, Supriya ; Nayak, Anshuman ; Pradhan, Suvikram ; Sharma, G. Avinash ; Munibara, Patro Pankajkumar ; Tara, Saikumar ; Balas, Valentina E. ; Avala, Raji Reddy ; Gimmadi, Srikanth ; Vuppula, Anil Kumar</creatorcontrib><description>The main aim of today’s research is to generate the trajectory from initial to goal that satisfies some objectives, like minimization of time interval, acceleration, Torque, by satisfying the manipulator’s kinematic and dynamic. To this purpose, synchronization of all active DOFs is an important feature of a trajectory planning system. To achieve motion with optimal smoothness, trajectories are executed by all actuators with the identical start and finish time in-starts. The path is made up of ordered loci of places in space that the robot must follow. Locally, the trajectory is defined and planned. Individual trajectories cover sections of the journey. It is often essential that quantities of trajectories merge seamlessly, ensuing in a trajectory design that completely considers the direction’s neighboring trajectories. When bits of trajectories must merge seamlessly, a single trajectory design must consider only the path’s nearby trajectories. A trajectory on the other hand comprises a path and a schedule for getting from initial point (A) to goal point (B). In this paper, the trajectories specified through cubic and quintic polynomial have tested for the 6-DOF RPPPRR customized robot model. Geometry of trajectory analysis through robotic software out put provides a satisfactory smooth trajectory generation through quintic polynomial trajectory over the cubic polynomial trajectory.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0155187</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Customization ; Kinematics ; Polynomials ; Robots ; Smoothness ; Synchronism ; Trajectory analysis ; Trajectory optimization ; Trajectory planning</subject><ispartof>AIP conference proceedings, 2023, Vol.2477 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Tara, Saikumar</contributor><contributor>Balas, Valentina E.</contributor><contributor>Avala, Raji Reddy</contributor><contributor>Gimmadi, Srikanth</contributor><contributor>Vuppula, Anil Kumar</contributor><creatorcontrib>Rath, Kali Charan</creatorcontrib><creatorcontrib>Sahu, Supriya</creatorcontrib><creatorcontrib>Nayak, Anshuman</creatorcontrib><creatorcontrib>Pradhan, Suvikram</creatorcontrib><creatorcontrib>Sharma, G. Avinash</creatorcontrib><creatorcontrib>Munibara, Patro Pankajkumar</creatorcontrib><title>Geometrical significance of trajectory planning through polynomial equation – Customized RPPPRR model robot</title><title>AIP conference proceedings</title><description>The main aim of today’s research is to generate the trajectory from initial to goal that satisfies some objectives, like minimization of time interval, acceleration, Torque, by satisfying the manipulator’s kinematic and dynamic. To this purpose, synchronization of all active DOFs is an important feature of a trajectory planning system. To achieve motion with optimal smoothness, trajectories are executed by all actuators with the identical start and finish time in-starts. The path is made up of ordered loci of places in space that the robot must follow. Locally, the trajectory is defined and planned. Individual trajectories cover sections of the journey. It is often essential that quantities of trajectories merge seamlessly, ensuing in a trajectory design that completely considers the direction’s neighboring trajectories. When bits of trajectories must merge seamlessly, a single trajectory design must consider only the path’s nearby trajectories. A trajectory on the other hand comprises a path and a schedule for getting from initial point (A) to goal point (B). In this paper, the trajectories specified through cubic and quintic polynomial have tested for the 6-DOF RPPPRR customized robot model. Geometry of trajectory analysis through robotic software out put provides a satisfactory smooth trajectory generation through quintic polynomial trajectory over the cubic polynomial trajectory.</description><subject>Actuators</subject><subject>Customization</subject><subject>Kinematics</subject><subject>Polynomials</subject><subject>Robots</subject><subject>Smoothness</subject><subject>Synchronism</subject><subject>Trajectory analysis</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFOwzAQRS0EEqWw4AaW2CGl2LEdO0tUQUGqRFV1wS5ynGnrKrFTx1mUFXfghpyElHY1T6P_Z_Q_QveUTCjJ2JOYECoEVfICjY6QyIxml2hESM6TlLPPa3TTdTtC0lxKNULNDHwDMVija9zZjbPrAZ0B7Nc4Br0DE3044LbWzlm3wXEbfL_Z4tbXB-cbO9hg3-tovcO_3z942ndxWH9BhZeLxWK5xI2voMbBlz7eoqu1rju4O88xWr2-rKZvyfxj9j59nictZSwm1BhYp6UqlQFFOAUQmWEAquTEmFxyrnkpFTe5koynmRA841Um87ykmlZsjB5OZ9vg9z10sdj5PrjhY5EqqngqGOOD6vGk6oyN_wGKNthGh0NBSXFssxDFuU32B6r2aTU</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Rath, Kali Charan</creator><creator>Sahu, Supriya</creator><creator>Nayak, Anshuman</creator><creator>Pradhan, Suvikram</creator><creator>Sharma, G. Avinash</creator><creator>Munibara, Patro Pankajkumar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230524</creationdate><title>Geometrical significance of trajectory planning through polynomial equation – Customized RPPPRR model robot</title><author>Rath, Kali Charan ; Sahu, Supriya ; Nayak, Anshuman ; Pradhan, Suvikram ; Sharma, G. Avinash ; Munibara, Patro Pankajkumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-1ccef2b8b8ce8041ee56c3ee8b40cc9744a4b784c987342655464d6799b1a1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>Customization</topic><topic>Kinematics</topic><topic>Polynomials</topic><topic>Robots</topic><topic>Smoothness</topic><topic>Synchronism</topic><topic>Trajectory analysis</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rath, Kali Charan</creatorcontrib><creatorcontrib>Sahu, Supriya</creatorcontrib><creatorcontrib>Nayak, Anshuman</creatorcontrib><creatorcontrib>Pradhan, Suvikram</creatorcontrib><creatorcontrib>Sharma, G. Avinash</creatorcontrib><creatorcontrib>Munibara, Patro Pankajkumar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rath, Kali Charan</au><au>Sahu, Supriya</au><au>Nayak, Anshuman</au><au>Pradhan, Suvikram</au><au>Sharma, G. Avinash</au><au>Munibara, Patro Pankajkumar</au><au>Tara, Saikumar</au><au>Balas, Valentina E.</au><au>Avala, Raji Reddy</au><au>Gimmadi, Srikanth</au><au>Vuppula, Anil Kumar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Geometrical significance of trajectory planning through polynomial equation – Customized RPPPRR model robot</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-24</date><risdate>2023</risdate><volume>2477</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The main aim of today’s research is to generate the trajectory from initial to goal that satisfies some objectives, like minimization of time interval, acceleration, Torque, by satisfying the manipulator’s kinematic and dynamic. To this purpose, synchronization of all active DOFs is an important feature of a trajectory planning system. To achieve motion with optimal smoothness, trajectories are executed by all actuators with the identical start and finish time in-starts. The path is made up of ordered loci of places in space that the robot must follow. Locally, the trajectory is defined and planned. Individual trajectories cover sections of the journey. It is often essential that quantities of trajectories merge seamlessly, ensuing in a trajectory design that completely considers the direction’s neighboring trajectories. When bits of trajectories must merge seamlessly, a single trajectory design must consider only the path’s nearby trajectories. A trajectory on the other hand comprises a path and a schedule for getting from initial point (A) to goal point (B). In this paper, the trajectories specified through cubic and quintic polynomial have tested for the 6-DOF RPPPRR customized robot model. Geometry of trajectory analysis through robotic software out put provides a satisfactory smooth trajectory generation through quintic polynomial trajectory over the cubic polynomial trajectory.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0155187</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2477 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2818425334 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Actuators Customization Kinematics Polynomials Robots Smoothness Synchronism Trajectory analysis Trajectory optimization Trajectory planning |
title | Geometrical significance of trajectory planning through polynomial equation – Customized RPPPRR model robot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Geometrical%20significance%20of%20trajectory%20planning%20through%20polynomial%20equation%20%E2%80%93%20Customized%20RPPPRR%20model%20robot&rft.btitle=AIP%20conference%20proceedings&rft.au=Rath,%20Kali%20Charan&rft.date=2023-05-24&rft.volume=2477&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0155187&rft_dat=%3Cproquest_scita%3E2818425334%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-1ccef2b8b8ce8041ee56c3ee8b40cc9744a4b784c987342655464d6799b1a1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818425334&rft_id=info:pmid/&rfr_iscdi=true |