Loading…
State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer
The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH o...
Saved in:
Published in: | Neural computing & applications 2023-07, Vol.35 (19), p.14169-14182 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513 |
container_end_page | 14182 |
container_issue | 19 |
container_start_page | 14169 |
container_title | Neural computing & applications |
container_volume | 35 |
creator | Chen, Liping Xu, Changcheng Bao, Xinyuan Lopes, António Li, Penghua Zhang, Chaolong |
description | The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives. |
doi_str_mv | 10.1007/s00521-023-08471-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2818532183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818532183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</originalsourceid><addsrcrecordid>eNp9kE9PwyAYh4nRxDn9Ap6aeEZf-kLLjmbxX7LEg3omtIW1W9dWoC779jJr4s3TL8DveYGHkGsGtwwgv_MAImUUUqQgec5ofkJmjCNSBCFPyQwWPB5nHM_JhfcbAOCZFDMyvgUdDO0trY1uQ50YH5qdDk3fJb1NVk2om3FHj8tCh2DcIaY3VfKzUW7p4PpBryegM6PTbYyw79022Uc40ZUeQvNlkrqpKtMlrT4Yd0nOrG69ufrNOfl4fHhfPtPV69PL8n5FS8wwUIuANjPIBBZlpFnOeW5SbkomKwO8QMYgQ1nkttSisrhgdiFAYCVLBoLhnNxMc-MrP8f4NbXpR9fFK1UqmRSYMomxlU6t0vXeO2PV4KIDd1AM1FGvmvSqqFf96FV5hHCCfCx3a-P-Rv9DfQPSVn7B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818532183</pqid></control><display><type>article</type><title>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</title><source>Springer Nature</source><creator>Chen, Liping ; Xu, Changcheng ; Bao, Xinyuan ; Lopes, António ; Li, Penghua ; Zhang, Chaolong</creator><creatorcontrib>Chen, Liping ; Xu, Changcheng ; Bao, Xinyuan ; Lopes, António ; Li, Penghua ; Zhang, Chaolong</creatorcontrib><description>The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08471-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Automation ; Back propagation ; Back propagation networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Emission standards ; Engineering ; Image Processing and Computer Vision ; Lithium ; Lithium-ion batteries ; Methods ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Propagation ; Rechargeable batteries ; Saturn ; Training</subject><ispartof>Neural computing & applications, 2023-07, Vol.35 (19), p.14169-14182</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</citedby><cites>FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</cites><orcidid>0000-0001-7359-4370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xu, Changcheng</creatorcontrib><creatorcontrib>Bao, Xinyuan</creatorcontrib><creatorcontrib>Lopes, António</creatorcontrib><creatorcontrib>Li, Penghua</creatorcontrib><creatorcontrib>Zhang, Chaolong</creatorcontrib><title>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Emission standards</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Propagation</subject><subject>Rechargeable batteries</subject><subject>Saturn</subject><subject>Training</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwyAYh4nRxDn9Ap6aeEZf-kLLjmbxX7LEg3omtIW1W9dWoC779jJr4s3TL8DveYGHkGsGtwwgv_MAImUUUqQgec5ofkJmjCNSBCFPyQwWPB5nHM_JhfcbAOCZFDMyvgUdDO0trY1uQ50YH5qdDk3fJb1NVk2om3FHj8tCh2DcIaY3VfKzUW7p4PpBryegM6PTbYyw79022Uc40ZUeQvNlkrqpKtMlrT4Yd0nOrG69ufrNOfl4fHhfPtPV69PL8n5FS8wwUIuANjPIBBZlpFnOeW5SbkomKwO8QMYgQ1nkttSisrhgdiFAYCVLBoLhnNxMc-MrP8f4NbXpR9fFK1UqmRSYMomxlU6t0vXeO2PV4KIDd1AM1FGvmvSqqFf96FV5hHCCfCx3a-P-Rv9DfQPSVn7B</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Liping</creator><creator>Xu, Changcheng</creator><creator>Bao, Xinyuan</creator><creator>Lopes, António</creator><creator>Li, Penghua</creator><creator>Zhang, Chaolong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid></search><sort><creationdate>20230701</creationdate><title>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</title><author>Chen, Liping ; Xu, Changcheng ; Bao, Xinyuan ; Lopes, António ; Li, Penghua ; Zhang, Chaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Emission standards</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Propagation</topic><topic>Rechargeable batteries</topic><topic>Saturn</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xu, Changcheng</creatorcontrib><creatorcontrib>Bao, Xinyuan</creatorcontrib><creatorcontrib>Lopes, António</creatorcontrib><creatorcontrib>Li, Penghua</creatorcontrib><creatorcontrib>Zhang, Chaolong</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liping</au><au>Xu, Changcheng</au><au>Bao, Xinyuan</au><au>Lopes, António</au><au>Li, Penghua</au><au>Zhang, Chaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>19</issue><spage>14169</spage><epage>14182</epage><pages>14169-14182</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08471-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2023-07, Vol.35 (19), p.14169-14182 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2818532183 |
source | Springer Nature |
subjects | Accuracy Artificial Intelligence Artificial neural networks Automation Back propagation Back propagation networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Emission standards Engineering Image Processing and Computer Vision Lithium Lithium-ion batteries Methods Neural networks Original Article Probability and Statistics in Computer Science Propagation Rechargeable batteries Saturn Training |
title | State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-health%20estimation%20of%20Lithium-ion%20battery%20based%20on%20back-propagation%20neural%20network%20with%20adaptive%20hidden%20layer&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chen,%20Liping&rft.date=2023-07-01&rft.volume=35&rft.issue=19&rft.spage=14169&rft.epage=14182&rft.pages=14169-14182&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08471-7&rft_dat=%3Cproquest_cross%3E2818532183%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818532183&rft_id=info:pmid/&rfr_iscdi=true |