Loading…

State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer

The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH o...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2023-07, Vol.35 (19), p.14169-14182
Main Authors: Chen, Liping, Xu, Changcheng, Bao, Xinyuan, Lopes, António, Li, Penghua, Zhang, Chaolong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513
cites cdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513
container_end_page 14182
container_issue 19
container_start_page 14169
container_title Neural computing & applications
container_volume 35
creator Chen, Liping
Xu, Changcheng
Bao, Xinyuan
Lopes, António
Li, Penghua
Zhang, Chaolong
description The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.
doi_str_mv 10.1007/s00521-023-08471-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2818532183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818532183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</originalsourceid><addsrcrecordid>eNp9kE9PwyAYh4nRxDn9Ap6aeEZf-kLLjmbxX7LEg3omtIW1W9dWoC779jJr4s3TL8DveYGHkGsGtwwgv_MAImUUUqQgec5ofkJmjCNSBCFPyQwWPB5nHM_JhfcbAOCZFDMyvgUdDO0trY1uQ50YH5qdDk3fJb1NVk2om3FHj8tCh2DcIaY3VfKzUW7p4PpBryegM6PTbYyw79022Uc40ZUeQvNlkrqpKtMlrT4Yd0nOrG69ufrNOfl4fHhfPtPV69PL8n5FS8wwUIuANjPIBBZlpFnOeW5SbkomKwO8QMYgQ1nkttSisrhgdiFAYCVLBoLhnNxMc-MrP8f4NbXpR9fFK1UqmRSYMomxlU6t0vXeO2PV4KIDd1AM1FGvmvSqqFf96FV5hHCCfCx3a-P-Rv9DfQPSVn7B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818532183</pqid></control><display><type>article</type><title>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</title><source>Springer Nature</source><creator>Chen, Liping ; Xu, Changcheng ; Bao, Xinyuan ; Lopes, António ; Li, Penghua ; Zhang, Chaolong</creator><creatorcontrib>Chen, Liping ; Xu, Changcheng ; Bao, Xinyuan ; Lopes, António ; Li, Penghua ; Zhang, Chaolong</creatorcontrib><description>The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-023-08471-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Artificial neural networks ; Automation ; Back propagation ; Back propagation networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Emission standards ; Engineering ; Image Processing and Computer Vision ; Lithium ; Lithium-ion batteries ; Methods ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Propagation ; Rechargeable batteries ; Saturn ; Training</subject><ispartof>Neural computing &amp; applications, 2023-07, Vol.35 (19), p.14169-14182</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</citedby><cites>FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</cites><orcidid>0000-0001-7359-4370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xu, Changcheng</creatorcontrib><creatorcontrib>Bao, Xinyuan</creatorcontrib><creatorcontrib>Lopes, António</creatorcontrib><creatorcontrib>Li, Penghua</creatorcontrib><creatorcontrib>Zhang, Chaolong</creatorcontrib><title>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Emission standards</subject><subject>Engineering</subject><subject>Image Processing and Computer Vision</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Propagation</subject><subject>Rechargeable batteries</subject><subject>Saturn</subject><subject>Training</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwyAYh4nRxDn9Ap6aeEZf-kLLjmbxX7LEg3omtIW1W9dWoC779jJr4s3TL8DveYGHkGsGtwwgv_MAImUUUqQgec5ofkJmjCNSBCFPyQwWPB5nHM_JhfcbAOCZFDMyvgUdDO0trY1uQ50YH5qdDk3fJb1NVk2om3FHj8tCh2DcIaY3VfKzUW7p4PpBryegM6PTbYyw79022Uc40ZUeQvNlkrqpKtMlrT4Yd0nOrG69ufrNOfl4fHhfPtPV69PL8n5FS8wwUIuANjPIBBZlpFnOeW5SbkomKwO8QMYgQ1nkttSisrhgdiFAYCVLBoLhnNxMc-MrP8f4NbXpR9fFK1UqmRSYMomxlU6t0vXeO2PV4KIDd1AM1FGvmvSqqFf96FV5hHCCfCx3a-P-Rv9DfQPSVn7B</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Liping</creator><creator>Xu, Changcheng</creator><creator>Bao, Xinyuan</creator><creator>Lopes, António</creator><creator>Li, Penghua</creator><creator>Zhang, Chaolong</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid></search><sort><creationdate>20230701</creationdate><title>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</title><author>Chen, Liping ; Xu, Changcheng ; Bao, Xinyuan ; Lopes, António ; Li, Penghua ; Zhang, Chaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Emission standards</topic><topic>Engineering</topic><topic>Image Processing and Computer Vision</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Propagation</topic><topic>Rechargeable batteries</topic><topic>Saturn</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liping</creatorcontrib><creatorcontrib>Xu, Changcheng</creatorcontrib><creatorcontrib>Bao, Xinyuan</creatorcontrib><creatorcontrib>Lopes, António</creatorcontrib><creatorcontrib>Li, Penghua</creatorcontrib><creatorcontrib>Zhang, Chaolong</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liping</au><au>Xu, Changcheng</au><au>Bao, Xinyuan</au><au>Lopes, António</au><au>Li, Penghua</au><au>Zhang, Chaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>19</issue><spage>14169</spage><epage>14182</epage><pages>14169-14182</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The reliability and safety of lithium-ion batteries (LIBs) are key issues in battery applications. Accurate prediction of the state-of-health (SOH) of LIBs can reduce or even avoid battery-related accidents. In this paper, a new back-propagation neural network (BPNN) is proposed to predict the SOH of LIBs. The BPNN uses as input the LIB voltage, current and temperature, as well as the charging time, since it is strongly correlated with the SOH. The number of hidden layer nodes is adaptively set based on the training data in order to improve the generalization capability of the BPNN. The effectiveness and robustness of the proposed scheme is verified using four distinct battery datasets and different training data. Experimental results show that the new BPNN is able to accurately predict the SOH of LIBs, revealing superiority when compared to other alternatives.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-023-08471-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7359-4370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2023-07, Vol.35 (19), p.14169-14182
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2818532183
source Springer Nature
subjects Accuracy
Artificial Intelligence
Artificial neural networks
Automation
Back propagation
Back propagation networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Emission standards
Engineering
Image Processing and Computer Vision
Lithium
Lithium-ion batteries
Methods
Neural networks
Original Article
Probability and Statistics in Computer Science
Propagation
Rechargeable batteries
Saturn
Training
title State-of-health estimation of Lithium-ion battery based on back-propagation neural network with adaptive hidden layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State-of-health%20estimation%20of%20Lithium-ion%20battery%20based%20on%20back-propagation%20neural%20network%20with%20adaptive%20hidden%20layer&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chen,%20Liping&rft.date=2023-07-01&rft.volume=35&rft.issue=19&rft.spage=14169&rft.epage=14182&rft.pages=14169-14182&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-023-08471-7&rft_dat=%3Cproquest_cross%3E2818532183%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f303f6e3153bcdde17447e24ec18de04b3110638b7fca5df391f95053d8c10513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818532183&rft_id=info:pmid/&rfr_iscdi=true