Loading…

SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Schaller, Matthieu, Borrow, Josh, Draper, Peter W, Ivkovic, Mladen, McAlpine, Stuart, Vandenbroucke, Bert, Bahé, Yannick, Chaikin, Evgenii, Chalk, Aidan B G, Chan, Tsang Keung, Correa, Camila, Marcel van Daalen, Elbers, Willem, Gonnet, Pedro, Hausammann, Loïc, Helly, John, Huško, Filip, Kegerreis, Jacob A, Nobels, Folkert S J, Ploeckinger, Sylvia, Revaz, Yves, Roper, William J, Ruiz-Bonilla, Sergio, Sandnes, Thomas D, Uyttenhove, Yolan, Willis, James S, Xiang, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schaller, Matthieu
Borrow, Josh
Draper, Peter W
Ivkovic, Mladen
McAlpine, Stuart
Vandenbroucke, Bert
Bahé, Yannick
Chaikin, Evgenii
Chalk, Aidan B G
Chan, Tsang Keung
Correa, Camila
Marcel van Daalen
Elbers, Willem
Gonnet, Pedro
Hausammann, Loïc
Helly, John
Huško, Filip
Kegerreis, Jacob A
Nobels, Folkert S J
Ploeckinger, Sylvia
Revaz, Yves
Roper, William J
Ruiz-Bonilla, Sergio
Sandnes, Thomas D
Uyttenhove, Yolan
Willis, James S
Xiang, Zhen
description Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.
doi_str_mv 10.48550/arxiv.2305.13380
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2818536210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818536210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3</originalsourceid><addsrcrecordid>eNotTc1Kw0AYXATBUvsA3hY8p-5PNtl4K8VqoeDBisfyZfdLk7LNxt20mKtP3mCdywwzzAwhD5zNU60Ue4Lw05znQjI151JqdkMmQkqe6FSIOzKL8cAYE1kulJIT8vvxtV5tn-mCHr3F0NK62dduSDoI4Bw6ug9wbvqBQmtpPHrf12jpmPaNcUjrwQZvhxaOjYk0enfGQCsfKMQ--K4eYmPA_ZWNH-vO769G17lR9I1v4z25rcBFnP3zlHyuXrbLt2Tz_rpeLjYJ8FSyRPARBWKVmVLpVFmDeVkJFKrUPLfI0GibaizzygJLM-BliQiykGgKVYCcksfrbhf89wljvzv4U2jHy53QXCuZCc7kBYFkZac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818536210</pqid></control><display><type>article</type><title>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</title><source>Publicly Available Content Database</source><creator>Schaller, Matthieu ; Borrow, Josh ; Draper, Peter W ; Ivkovic, Mladen ; McAlpine, Stuart ; Vandenbroucke, Bert ; Bahé, Yannick ; Chaikin, Evgenii ; Chalk, Aidan B G ; Chan, Tsang Keung ; Correa, Camila ; Marcel van Daalen ; Elbers, Willem ; Gonnet, Pedro ; Hausammann, Loïc ; Helly, John ; Huško, Filip ; Kegerreis, Jacob A ; Nobels, Folkert S J ; Ploeckinger, Sylvia ; Revaz, Yves ; Roper, William J ; Ruiz-Bonilla, Sergio ; Sandnes, Thomas D ; Uyttenhove, Yolan ; Willis, James S ; Xiang, Zhen</creator><creatorcontrib>Schaller, Matthieu ; Borrow, Josh ; Draper, Peter W ; Ivkovic, Mladen ; McAlpine, Stuart ; Vandenbroucke, Bert ; Bahé, Yannick ; Chaikin, Evgenii ; Chalk, Aidan B G ; Chan, Tsang Keung ; Correa, Camila ; Marcel van Daalen ; Elbers, Willem ; Gonnet, Pedro ; Hausammann, Loïc ; Helly, John ; Huško, Filip ; Kegerreis, Jacob A ; Nobels, Folkert S J ; Ploeckinger, Sylvia ; Revaz, Yves ; Roper, William J ; Ruiz-Bonilla, Sergio ; Sandnes, Thomas D ; Uyttenhove, Yolan ; Willis, James S ; Xiang, Zhen</creatorcontrib><description>Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2305.13380</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Astronomical models ; Computation ; Computer simulation ; Cosmology ; Domain decomposition methods ; Finite element method ; Flavors ; Fluid mechanics ; Galactic evolution ; Gas evolution ; Gravity ; Multipoles ; Neutrinos ; Numerical methods ; Power spectra ; Smooth particle hydrodynamics ; Solvers ; Star &amp; galaxy formation</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2818536210?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Schaller, Matthieu</creatorcontrib><creatorcontrib>Borrow, Josh</creatorcontrib><creatorcontrib>Draper, Peter W</creatorcontrib><creatorcontrib>Ivkovic, Mladen</creatorcontrib><creatorcontrib>McAlpine, Stuart</creatorcontrib><creatorcontrib>Vandenbroucke, Bert</creatorcontrib><creatorcontrib>Bahé, Yannick</creatorcontrib><creatorcontrib>Chaikin, Evgenii</creatorcontrib><creatorcontrib>Chalk, Aidan B G</creatorcontrib><creatorcontrib>Chan, Tsang Keung</creatorcontrib><creatorcontrib>Correa, Camila</creatorcontrib><creatorcontrib>Marcel van Daalen</creatorcontrib><creatorcontrib>Elbers, Willem</creatorcontrib><creatorcontrib>Gonnet, Pedro</creatorcontrib><creatorcontrib>Hausammann, Loïc</creatorcontrib><creatorcontrib>Helly, John</creatorcontrib><creatorcontrib>Huško, Filip</creatorcontrib><creatorcontrib>Kegerreis, Jacob A</creatorcontrib><creatorcontrib>Nobels, Folkert S J</creatorcontrib><creatorcontrib>Ploeckinger, Sylvia</creatorcontrib><creatorcontrib>Revaz, Yves</creatorcontrib><creatorcontrib>Roper, William J</creatorcontrib><creatorcontrib>Ruiz-Bonilla, Sergio</creatorcontrib><creatorcontrib>Sandnes, Thomas D</creatorcontrib><creatorcontrib>Uyttenhove, Yolan</creatorcontrib><creatorcontrib>Willis, James S</creatorcontrib><creatorcontrib>Xiang, Zhen</creatorcontrib><title>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</title><title>arXiv.org</title><description>Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.</description><subject>Algorithms</subject><subject>Astronomical models</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Cosmology</subject><subject>Domain decomposition methods</subject><subject>Finite element method</subject><subject>Flavors</subject><subject>Fluid mechanics</subject><subject>Galactic evolution</subject><subject>Gas evolution</subject><subject>Gravity</subject><subject>Multipoles</subject><subject>Neutrinos</subject><subject>Numerical methods</subject><subject>Power spectra</subject><subject>Smooth particle hydrodynamics</subject><subject>Solvers</subject><subject>Star &amp; galaxy formation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTc1Kw0AYXATBUvsA3hY8p-5PNtl4K8VqoeDBisfyZfdLk7LNxt20mKtP3mCdywwzzAwhD5zNU60Ue4Lw05znQjI151JqdkMmQkqe6FSIOzKL8cAYE1kulJIT8vvxtV5tn-mCHr3F0NK62dduSDoI4Bw6ug9wbvqBQmtpPHrf12jpmPaNcUjrwQZvhxaOjYk0enfGQCsfKMQ--K4eYmPA_ZWNH-vO769G17lR9I1v4z25rcBFnP3zlHyuXrbLt2Tz_rpeLjYJ8FSyRPARBWKVmVLpVFmDeVkJFKrUPLfI0GibaizzygJLM-BliQiykGgKVYCcksfrbhf89wljvzv4U2jHy53QXCuZCc7kBYFkZac</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Schaller, Matthieu</creator><creator>Borrow, Josh</creator><creator>Draper, Peter W</creator><creator>Ivkovic, Mladen</creator><creator>McAlpine, Stuart</creator><creator>Vandenbroucke, Bert</creator><creator>Bahé, Yannick</creator><creator>Chaikin, Evgenii</creator><creator>Chalk, Aidan B G</creator><creator>Chan, Tsang Keung</creator><creator>Correa, Camila</creator><creator>Marcel van Daalen</creator><creator>Elbers, Willem</creator><creator>Gonnet, Pedro</creator><creator>Hausammann, Loïc</creator><creator>Helly, John</creator><creator>Huško, Filip</creator><creator>Kegerreis, Jacob A</creator><creator>Nobels, Folkert S J</creator><creator>Ploeckinger, Sylvia</creator><creator>Revaz, Yves</creator><creator>Roper, William J</creator><creator>Ruiz-Bonilla, Sergio</creator><creator>Sandnes, Thomas D</creator><creator>Uyttenhove, Yolan</creator><creator>Willis, James S</creator><creator>Xiang, Zhen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240329</creationdate><title>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</title><author>Schaller, Matthieu ; Borrow, Josh ; Draper, Peter W ; Ivkovic, Mladen ; McAlpine, Stuart ; Vandenbroucke, Bert ; Bahé, Yannick ; Chaikin, Evgenii ; Chalk, Aidan B G ; Chan, Tsang Keung ; Correa, Camila ; Marcel van Daalen ; Elbers, Willem ; Gonnet, Pedro ; Hausammann, Loïc ; Helly, John ; Huško, Filip ; Kegerreis, Jacob A ; Nobels, Folkert S J ; Ploeckinger, Sylvia ; Revaz, Yves ; Roper, William J ; Ruiz-Bonilla, Sergio ; Sandnes, Thomas D ; Uyttenhove, Yolan ; Willis, James S ; Xiang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Astronomical models</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Cosmology</topic><topic>Domain decomposition methods</topic><topic>Finite element method</topic><topic>Flavors</topic><topic>Fluid mechanics</topic><topic>Galactic evolution</topic><topic>Gas evolution</topic><topic>Gravity</topic><topic>Multipoles</topic><topic>Neutrinos</topic><topic>Numerical methods</topic><topic>Power spectra</topic><topic>Smooth particle hydrodynamics</topic><topic>Solvers</topic><topic>Star &amp; galaxy formation</topic><toplevel>online_resources</toplevel><creatorcontrib>Schaller, Matthieu</creatorcontrib><creatorcontrib>Borrow, Josh</creatorcontrib><creatorcontrib>Draper, Peter W</creatorcontrib><creatorcontrib>Ivkovic, Mladen</creatorcontrib><creatorcontrib>McAlpine, Stuart</creatorcontrib><creatorcontrib>Vandenbroucke, Bert</creatorcontrib><creatorcontrib>Bahé, Yannick</creatorcontrib><creatorcontrib>Chaikin, Evgenii</creatorcontrib><creatorcontrib>Chalk, Aidan B G</creatorcontrib><creatorcontrib>Chan, Tsang Keung</creatorcontrib><creatorcontrib>Correa, Camila</creatorcontrib><creatorcontrib>Marcel van Daalen</creatorcontrib><creatorcontrib>Elbers, Willem</creatorcontrib><creatorcontrib>Gonnet, Pedro</creatorcontrib><creatorcontrib>Hausammann, Loïc</creatorcontrib><creatorcontrib>Helly, John</creatorcontrib><creatorcontrib>Huško, Filip</creatorcontrib><creatorcontrib>Kegerreis, Jacob A</creatorcontrib><creatorcontrib>Nobels, Folkert S J</creatorcontrib><creatorcontrib>Ploeckinger, Sylvia</creatorcontrib><creatorcontrib>Revaz, Yves</creatorcontrib><creatorcontrib>Roper, William J</creatorcontrib><creatorcontrib>Ruiz-Bonilla, Sergio</creatorcontrib><creatorcontrib>Sandnes, Thomas D</creatorcontrib><creatorcontrib>Uyttenhove, Yolan</creatorcontrib><creatorcontrib>Willis, James S</creatorcontrib><creatorcontrib>Xiang, Zhen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaller, Matthieu</au><au>Borrow, Josh</au><au>Draper, Peter W</au><au>Ivkovic, Mladen</au><au>McAlpine, Stuart</au><au>Vandenbroucke, Bert</au><au>Bahé, Yannick</au><au>Chaikin, Evgenii</au><au>Chalk, Aidan B G</au><au>Chan, Tsang Keung</au><au>Correa, Camila</au><au>Marcel van Daalen</au><au>Elbers, Willem</au><au>Gonnet, Pedro</au><au>Hausammann, Loïc</au><au>Helly, John</au><au>Huško, Filip</au><au>Kegerreis, Jacob A</au><au>Nobels, Folkert S J</au><au>Ploeckinger, Sylvia</au><au>Revaz, Yves</au><au>Roper, William J</au><au>Ruiz-Bonilla, Sergio</au><au>Sandnes, Thomas D</au><au>Uyttenhove, Yolan</au><au>Willis, James S</au><au>Xiang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</atitle><jtitle>arXiv.org</jtitle><date>2024-03-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2305.13380</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2818536210
source Publicly Available Content Database
subjects Algorithms
Astronomical models
Computation
Computer simulation
Cosmology
Domain decomposition methods
Finite element method
Flavors
Fluid mechanics
Galactic evolution
Gas evolution
Gravity
Multipoles
Neutrinos
Numerical methods
Power spectra
Smooth particle hydrodynamics
Solvers
Star & galaxy formation
title SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SWIFT:%20A%20modern%20highly-parallel%20gravity%20and%20smoothed%20particle%20hydrodynamics%20solver%20for%20astrophysical%20and%20cosmological%20applications&rft.jtitle=arXiv.org&rft.au=Schaller,%20Matthieu&rft.date=2024-03-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2305.13380&rft_dat=%3Cproquest%3E2818536210%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818536210&rft_id=info:pmid/&rfr_iscdi=true