Loading…
SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications
Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, w...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Schaller, Matthieu Borrow, Josh Draper, Peter W Ivkovic, Mladen McAlpine, Stuart Vandenbroucke, Bert Bahé, Yannick Chaikin, Evgenii Chalk, Aidan B G Chan, Tsang Keung Correa, Camila Marcel van Daalen Elbers, Willem Gonnet, Pedro Hausammann, Loïc Helly, John Huško, Filip Kegerreis, Jacob A Nobels, Folkert S J Ploeckinger, Sylvia Revaz, Yves Roper, William J Ruiz-Bonilla, Sergio Sandnes, Thomas D Uyttenhove, Yolan Willis, James S Xiang, Zhen |
description | Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT. |
doi_str_mv | 10.48550/arxiv.2305.13380 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2818536210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818536210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3</originalsourceid><addsrcrecordid>eNotTc1Kw0AYXATBUvsA3hY8p-5PNtl4K8VqoeDBisfyZfdLk7LNxt20mKtP3mCdywwzzAwhD5zNU60Ue4Lw05znQjI151JqdkMmQkqe6FSIOzKL8cAYE1kulJIT8vvxtV5tn-mCHr3F0NK62dduSDoI4Bw6ug9wbvqBQmtpPHrf12jpmPaNcUjrwQZvhxaOjYk0enfGQCsfKMQ--K4eYmPA_ZWNH-vO769G17lR9I1v4z25rcBFnP3zlHyuXrbLt2Tz_rpeLjYJ8FSyRPARBWKVmVLpVFmDeVkJFKrUPLfI0GibaizzygJLM-BliQiykGgKVYCcksfrbhf89wljvzv4U2jHy53QXCuZCc7kBYFkZac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818536210</pqid></control><display><type>article</type><title>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</title><source>Publicly Available Content Database</source><creator>Schaller, Matthieu ; Borrow, Josh ; Draper, Peter W ; Ivkovic, Mladen ; McAlpine, Stuart ; Vandenbroucke, Bert ; Bahé, Yannick ; Chaikin, Evgenii ; Chalk, Aidan B G ; Chan, Tsang Keung ; Correa, Camila ; Marcel van Daalen ; Elbers, Willem ; Gonnet, Pedro ; Hausammann, Loïc ; Helly, John ; Huško, Filip ; Kegerreis, Jacob A ; Nobels, Folkert S J ; Ploeckinger, Sylvia ; Revaz, Yves ; Roper, William J ; Ruiz-Bonilla, Sergio ; Sandnes, Thomas D ; Uyttenhove, Yolan ; Willis, James S ; Xiang, Zhen</creator><creatorcontrib>Schaller, Matthieu ; Borrow, Josh ; Draper, Peter W ; Ivkovic, Mladen ; McAlpine, Stuart ; Vandenbroucke, Bert ; Bahé, Yannick ; Chaikin, Evgenii ; Chalk, Aidan B G ; Chan, Tsang Keung ; Correa, Camila ; Marcel van Daalen ; Elbers, Willem ; Gonnet, Pedro ; Hausammann, Loïc ; Helly, John ; Huško, Filip ; Kegerreis, Jacob A ; Nobels, Folkert S J ; Ploeckinger, Sylvia ; Revaz, Yves ; Roper, William J ; Ruiz-Bonilla, Sergio ; Sandnes, Thomas D ; Uyttenhove, Yolan ; Willis, James S ; Xiang, Zhen</creatorcontrib><description>Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2305.13380</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Astronomical models ; Computation ; Computer simulation ; Cosmology ; Domain decomposition methods ; Finite element method ; Flavors ; Fluid mechanics ; Galactic evolution ; Gas evolution ; Gravity ; Multipoles ; Neutrinos ; Numerical methods ; Power spectra ; Smooth particle hydrodynamics ; Solvers ; Star & galaxy formation</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2818536210?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Schaller, Matthieu</creatorcontrib><creatorcontrib>Borrow, Josh</creatorcontrib><creatorcontrib>Draper, Peter W</creatorcontrib><creatorcontrib>Ivkovic, Mladen</creatorcontrib><creatorcontrib>McAlpine, Stuart</creatorcontrib><creatorcontrib>Vandenbroucke, Bert</creatorcontrib><creatorcontrib>Bahé, Yannick</creatorcontrib><creatorcontrib>Chaikin, Evgenii</creatorcontrib><creatorcontrib>Chalk, Aidan B G</creatorcontrib><creatorcontrib>Chan, Tsang Keung</creatorcontrib><creatorcontrib>Correa, Camila</creatorcontrib><creatorcontrib>Marcel van Daalen</creatorcontrib><creatorcontrib>Elbers, Willem</creatorcontrib><creatorcontrib>Gonnet, Pedro</creatorcontrib><creatorcontrib>Hausammann, Loïc</creatorcontrib><creatorcontrib>Helly, John</creatorcontrib><creatorcontrib>Huško, Filip</creatorcontrib><creatorcontrib>Kegerreis, Jacob A</creatorcontrib><creatorcontrib>Nobels, Folkert S J</creatorcontrib><creatorcontrib>Ploeckinger, Sylvia</creatorcontrib><creatorcontrib>Revaz, Yves</creatorcontrib><creatorcontrib>Roper, William J</creatorcontrib><creatorcontrib>Ruiz-Bonilla, Sergio</creatorcontrib><creatorcontrib>Sandnes, Thomas D</creatorcontrib><creatorcontrib>Uyttenhove, Yolan</creatorcontrib><creatorcontrib>Willis, James S</creatorcontrib><creatorcontrib>Xiang, Zhen</creatorcontrib><title>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</title><title>arXiv.org</title><description>Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.</description><subject>Algorithms</subject><subject>Astronomical models</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Cosmology</subject><subject>Domain decomposition methods</subject><subject>Finite element method</subject><subject>Flavors</subject><subject>Fluid mechanics</subject><subject>Galactic evolution</subject><subject>Gas evolution</subject><subject>Gravity</subject><subject>Multipoles</subject><subject>Neutrinos</subject><subject>Numerical methods</subject><subject>Power spectra</subject><subject>Smooth particle hydrodynamics</subject><subject>Solvers</subject><subject>Star & galaxy formation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTc1Kw0AYXATBUvsA3hY8p-5PNtl4K8VqoeDBisfyZfdLk7LNxt20mKtP3mCdywwzzAwhD5zNU60Ue4Lw05znQjI151JqdkMmQkqe6FSIOzKL8cAYE1kulJIT8vvxtV5tn-mCHr3F0NK62dduSDoI4Bw6ug9wbvqBQmtpPHrf12jpmPaNcUjrwQZvhxaOjYk0enfGQCsfKMQ--K4eYmPA_ZWNH-vO769G17lR9I1v4z25rcBFnP3zlHyuXrbLt2Tz_rpeLjYJ8FSyRPARBWKVmVLpVFmDeVkJFKrUPLfI0GibaizzygJLM-BliQiykGgKVYCcksfrbhf89wljvzv4U2jHy53QXCuZCc7kBYFkZac</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Schaller, Matthieu</creator><creator>Borrow, Josh</creator><creator>Draper, Peter W</creator><creator>Ivkovic, Mladen</creator><creator>McAlpine, Stuart</creator><creator>Vandenbroucke, Bert</creator><creator>Bahé, Yannick</creator><creator>Chaikin, Evgenii</creator><creator>Chalk, Aidan B G</creator><creator>Chan, Tsang Keung</creator><creator>Correa, Camila</creator><creator>Marcel van Daalen</creator><creator>Elbers, Willem</creator><creator>Gonnet, Pedro</creator><creator>Hausammann, Loïc</creator><creator>Helly, John</creator><creator>Huško, Filip</creator><creator>Kegerreis, Jacob A</creator><creator>Nobels, Folkert S J</creator><creator>Ploeckinger, Sylvia</creator><creator>Revaz, Yves</creator><creator>Roper, William J</creator><creator>Ruiz-Bonilla, Sergio</creator><creator>Sandnes, Thomas D</creator><creator>Uyttenhove, Yolan</creator><creator>Willis, James S</creator><creator>Xiang, Zhen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240329</creationdate><title>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</title><author>Schaller, Matthieu ; Borrow, Josh ; Draper, Peter W ; Ivkovic, Mladen ; McAlpine, Stuart ; Vandenbroucke, Bert ; Bahé, Yannick ; Chaikin, Evgenii ; Chalk, Aidan B G ; Chan, Tsang Keung ; Correa, Camila ; Marcel van Daalen ; Elbers, Willem ; Gonnet, Pedro ; Hausammann, Loïc ; Helly, John ; Huško, Filip ; Kegerreis, Jacob A ; Nobels, Folkert S J ; Ploeckinger, Sylvia ; Revaz, Yves ; Roper, William J ; Ruiz-Bonilla, Sergio ; Sandnes, Thomas D ; Uyttenhove, Yolan ; Willis, James S ; Xiang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Astronomical models</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Cosmology</topic><topic>Domain decomposition methods</topic><topic>Finite element method</topic><topic>Flavors</topic><topic>Fluid mechanics</topic><topic>Galactic evolution</topic><topic>Gas evolution</topic><topic>Gravity</topic><topic>Multipoles</topic><topic>Neutrinos</topic><topic>Numerical methods</topic><topic>Power spectra</topic><topic>Smooth particle hydrodynamics</topic><topic>Solvers</topic><topic>Star & galaxy formation</topic><toplevel>online_resources</toplevel><creatorcontrib>Schaller, Matthieu</creatorcontrib><creatorcontrib>Borrow, Josh</creatorcontrib><creatorcontrib>Draper, Peter W</creatorcontrib><creatorcontrib>Ivkovic, Mladen</creatorcontrib><creatorcontrib>McAlpine, Stuart</creatorcontrib><creatorcontrib>Vandenbroucke, Bert</creatorcontrib><creatorcontrib>Bahé, Yannick</creatorcontrib><creatorcontrib>Chaikin, Evgenii</creatorcontrib><creatorcontrib>Chalk, Aidan B G</creatorcontrib><creatorcontrib>Chan, Tsang Keung</creatorcontrib><creatorcontrib>Correa, Camila</creatorcontrib><creatorcontrib>Marcel van Daalen</creatorcontrib><creatorcontrib>Elbers, Willem</creatorcontrib><creatorcontrib>Gonnet, Pedro</creatorcontrib><creatorcontrib>Hausammann, Loïc</creatorcontrib><creatorcontrib>Helly, John</creatorcontrib><creatorcontrib>Huško, Filip</creatorcontrib><creatorcontrib>Kegerreis, Jacob A</creatorcontrib><creatorcontrib>Nobels, Folkert S J</creatorcontrib><creatorcontrib>Ploeckinger, Sylvia</creatorcontrib><creatorcontrib>Revaz, Yves</creatorcontrib><creatorcontrib>Roper, William J</creatorcontrib><creatorcontrib>Ruiz-Bonilla, Sergio</creatorcontrib><creatorcontrib>Sandnes, Thomas D</creatorcontrib><creatorcontrib>Uyttenhove, Yolan</creatorcontrib><creatorcontrib>Willis, James S</creatorcontrib><creatorcontrib>Xiang, Zhen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaller, Matthieu</au><au>Borrow, Josh</au><au>Draper, Peter W</au><au>Ivkovic, Mladen</au><au>McAlpine, Stuart</au><au>Vandenbroucke, Bert</au><au>Bahé, Yannick</au><au>Chaikin, Evgenii</au><au>Chalk, Aidan B G</au><au>Chan, Tsang Keung</au><au>Correa, Camila</au><au>Marcel van Daalen</au><au>Elbers, Willem</au><au>Gonnet, Pedro</au><au>Hausammann, Loïc</au><au>Helly, John</au><au>Huško, Filip</au><au>Kegerreis, Jacob A</au><au>Nobels, Folkert S J</au><au>Ploeckinger, Sylvia</au><au>Revaz, Yves</au><au>Roper, William J</au><au>Ruiz-Bonilla, Sergio</au><au>Sandnes, Thomas D</au><au>Uyttenhove, Yolan</au><au>Willis, James S</au><au>Xiang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications</atitle><jtitle>arXiv.org</jtitle><date>2024-03-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code SWIFT. The software package exploits hybrid shared- and distributed-memory task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. SWIFT also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarise the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with $\approx$$300$ billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with SWIFT.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2305.13380</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2818536210 |
source | Publicly Available Content Database |
subjects | Algorithms Astronomical models Computation Computer simulation Cosmology Domain decomposition methods Finite element method Flavors Fluid mechanics Galactic evolution Gas evolution Gravity Multipoles Neutrinos Numerical methods Power spectra Smooth particle hydrodynamics Solvers Star & galaxy formation |
title | SWIFT: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A33%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SWIFT:%20A%20modern%20highly-parallel%20gravity%20and%20smoothed%20particle%20hydrodynamics%20solver%20for%20astrophysical%20and%20cosmological%20applications&rft.jtitle=arXiv.org&rft.au=Schaller,%20Matthieu&rft.date=2024-03-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2305.13380&rft_dat=%3Cproquest%3E2818536210%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a1430-211119eef6cb5845dce7bf2e25b817de0ec8d48eb7fda046a1bbeea393ec959a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818536210&rft_id=info:pmid/&rfr_iscdi=true |