Loading…

Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution

A simulation of the present-day climate by the Community Climate System Model version 3 (CCSM3) that uses a Finite Volume (FV) numerical method for solving the equations governing the atmospheric dynamics is presented. The simulation is compared to observations and to the well-documented simulation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2008-04, Vol.21 (7), p.1467-1486
Main Authors: Bala, G., Rood, R. B., Mirin, A., McClean, J., Achutarao, Krishna, Bader, D., Gleckler, P., Neale, R., Rasch, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03
cites cdi_FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03
container_end_page 1486
container_issue 7
container_start_page 1467
container_title Journal of climate
container_volume 21
creator Bala, G.
Rood, R. B.
Mirin, A.
McClean, J.
Achutarao, Krishna
Bader, D.
Gleckler, P.
Neale, R.
Rasch, P.
description A simulation of the present-day climate by the Community Climate System Model version 3 (CCSM3) that uses a Finite Volume (FV) numerical method for solving the equations governing the atmospheric dynamics is presented. The simulation is compared to observations and to the well-documented simulation by the standard CCSM3, which uses the Eulerian spectral method for the atmospheric dynamics. The atmospheric component in the simulation herein uses a 1° latitude × 1.25° longitude grid, which is a slightly finer resolution than the T85-grid used in the spectral transform. As in the T85 simulation, the ocean and ice models use a nominal 1-degree grid. Although the physical parameterizations are the same and the resolution is comparable to the standard model, substantial testing and slight retuning were required to obtain an acceptable control simulation. There are significant improvements in the simulation of the surface wind stress and sea surface temperature. Improvements are also seen in the simulations of the total variance in the tropical Pacific, the spatial pattern of ice thickness distribution in the Arctic, and the vertically integrated ocean circulation in the Antarctic Circumpolar Current. The results herein demonstrate that the FV version of the CCSM coupled model is a state-of-the-art climate model whose simulation capabilities are in the class of those used for Intergovernmental Panel on Climate Change (IPCC) assessments. The simulated climate is very similar to that of the T85 version in terms of its biases, and more like the T85 model than the other IPCC models.
doi_str_mv 10.1175/2007JCLI2060.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2818802102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26260220</jstor_id><sourcerecordid>26260220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03</originalsourceid><addsrcrecordid>eNp1kc9O3DAQhy3USmwpV25IVlGP2c5M4sQ5ovC32goJaK-Rk3W6WSXxYjtFvACv0NfoM8CL4VVQ2wsnS5-_-Y00P8YOEOaImfhCANnXYnFJkAayw2YoCCJIEnrHZiDzJJKZELvsg3NrAKQUYMYeT3-pblS-NQM3DVe8KG6-xfym7cduovetXwV-1g6t1_yH6cZe85OHQfVtrTpeGKt5Yyz3K82PfW_cZqUDUp7j0x--CCF-XGr-_JvjnMQWmeHnxK61C3HbLR_Z-0Z1Tu-_vnvs-9npbXERLa7OL4vjRVTHgBg1MqckI6F0DaASSCXKKqdK1XleoVIirqDKBIokp7iusyVKaATppdYkkgriPXY05W6suRu18-XajHYIK0sKWRIIgYL16U2LKMdEYhyk-STV1jhndVNubNsr-1AilNtCyv8LKTEMfH5NVS5crrFqqFv3d4qAslTGIniHk7d23th__2lojAjiF77Tk5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222914813</pqid></control><display><type>article</type><title>Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Bala, G. ; Rood, R. B. ; Mirin, A. ; McClean, J. ; Achutarao, Krishna ; Bader, D. ; Gleckler, P. ; Neale, R. ; Rasch, P.</creator><creatorcontrib>Bala, G. ; Rood, R. B. ; Mirin, A. ; McClean, J. ; Achutarao, Krishna ; Bader, D. ; Gleckler, P. ; Neale, R. ; Rasch, P.</creatorcontrib><description>A simulation of the present-day climate by the Community Climate System Model version 3 (CCSM3) that uses a Finite Volume (FV) numerical method for solving the equations governing the atmospheric dynamics is presented. The simulation is compared to observations and to the well-documented simulation by the standard CCSM3, which uses the Eulerian spectral method for the atmospheric dynamics. The atmospheric component in the simulation herein uses a 1° latitude × 1.25° longitude grid, which is a slightly finer resolution than the T85-grid used in the spectral transform. As in the T85 simulation, the ocean and ice models use a nominal 1-degree grid. Although the physical parameterizations are the same and the resolution is comparable to the standard model, substantial testing and slight retuning were required to obtain an acceptable control simulation. There are significant improvements in the simulation of the surface wind stress and sea surface temperature. Improvements are also seen in the simulations of the total variance in the tropical Pacific, the spatial pattern of ice thickness distribution in the Arctic, and the vertically integrated ocean circulation in the Antarctic Circumpolar Current. The results herein demonstrate that the FV version of the CCSM coupled model is a state-of-the-art climate model whose simulation capabilities are in the class of those used for Intergovernmental Panel on Climate Change (IPCC) assessments. The simulated climate is very similar to that of the T85 version in terms of its biases, and more like the T85 model than the other IPCC models.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2007JCLI2060.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Antarctic circulation ; Antarctic Circumpolar Current ; Approximation ; Atmosphere ; Atmospheric dynamics ; Atmospheric models ; Atmospherics ; Climate change ; Climate models ; Climate system ; Climatology. Bioclimatology. Climate change ; Control simulation ; Data analysis ; Datasets ; Dynamical systems ; Dynamics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fluid dynamics ; General circulation models ; Geophysics. Techniques, methods, instrumentation and models ; Global climate models ; Ice ; Ice cover ; Ice models ; Ice thickness ; Intergovernmental Panel on Climate Change ; Latitude ; Longitude ; Mathematical models ; Meteorology ; Methods ; Modeling ; Modelling ; Numerical methods ; Ocean circulation ; Ocean currents ; Ocean models ; Oceans ; Precipitation ; Resolution ; Sea ice ; Sea surface ; Sea surface temperature ; Simulation ; Simulations ; Spectral methods ; Surface temperature ; Surface wind ; Viscosity ; Water circulation ; Weather forecasting ; Wind ; Wind stress</subject><ispartof>Journal of climate, 2008-04, Vol.21 (7), p.1467-1486</ispartof><rights>2008 American Meteorological Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Meteorological Society Apr 1, 2008</rights><rights>Copyright American Meteorological Society 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03</citedby><cites>FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26260220$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26260220$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20276835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bala, G.</creatorcontrib><creatorcontrib>Rood, R. B.</creatorcontrib><creatorcontrib>Mirin, A.</creatorcontrib><creatorcontrib>McClean, J.</creatorcontrib><creatorcontrib>Achutarao, Krishna</creatorcontrib><creatorcontrib>Bader, D.</creatorcontrib><creatorcontrib>Gleckler, P.</creatorcontrib><creatorcontrib>Neale, R.</creatorcontrib><creatorcontrib>Rasch, P.</creatorcontrib><title>Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution</title><title>Journal of climate</title><description>A simulation of the present-day climate by the Community Climate System Model version 3 (CCSM3) that uses a Finite Volume (FV) numerical method for solving the equations governing the atmospheric dynamics is presented. The simulation is compared to observations and to the well-documented simulation by the standard CCSM3, which uses the Eulerian spectral method for the atmospheric dynamics. The atmospheric component in the simulation herein uses a 1° latitude × 1.25° longitude grid, which is a slightly finer resolution than the T85-grid used in the spectral transform. As in the T85 simulation, the ocean and ice models use a nominal 1-degree grid. Although the physical parameterizations are the same and the resolution is comparable to the standard model, substantial testing and slight retuning were required to obtain an acceptable control simulation. There are significant improvements in the simulation of the surface wind stress and sea surface temperature. Improvements are also seen in the simulations of the total variance in the tropical Pacific, the spatial pattern of ice thickness distribution in the Arctic, and the vertically integrated ocean circulation in the Antarctic Circumpolar Current. The results herein demonstrate that the FV version of the CCSM coupled model is a state-of-the-art climate model whose simulation capabilities are in the class of those used for Intergovernmental Panel on Climate Change (IPCC) assessments. The simulated climate is very similar to that of the T85 version in terms of its biases, and more like the T85 model than the other IPCC models.</description><subject>Antarctic circulation</subject><subject>Antarctic Circumpolar Current</subject><subject>Approximation</subject><subject>Atmosphere</subject><subject>Atmospheric dynamics</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate system</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Control simulation</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluid dynamics</subject><subject>General circulation models</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Global climate models</subject><subject>Ice</subject><subject>Ice cover</subject><subject>Ice models</subject><subject>Ice thickness</subject><subject>Intergovernmental Panel on Climate Change</subject><subject>Latitude</subject><subject>Longitude</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Modeling</subject><subject>Modelling</subject><subject>Numerical methods</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Precipitation</subject><subject>Resolution</subject><subject>Sea ice</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Simulation</subject><subject>Simulations</subject><subject>Spectral methods</subject><subject>Surface temperature</subject><subject>Surface wind</subject><subject>Viscosity</subject><subject>Water circulation</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind stress</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kc9O3DAQhy3USmwpV25IVlGP2c5M4sQ5ovC32goJaK-Rk3W6WSXxYjtFvACv0NfoM8CL4VVQ2wsnS5-_-Y00P8YOEOaImfhCANnXYnFJkAayw2YoCCJIEnrHZiDzJJKZELvsg3NrAKQUYMYeT3-pblS-NQM3DVe8KG6-xfym7cduovetXwV-1g6t1_yH6cZe85OHQfVtrTpeGKt5Yyz3K82PfW_cZqUDUp7j0x--CCF-XGr-_JvjnMQWmeHnxK61C3HbLR_Z-0Z1Tu-_vnvs-9npbXERLa7OL4vjRVTHgBg1MqckI6F0DaASSCXKKqdK1XleoVIirqDKBIokp7iusyVKaATppdYkkgriPXY05W6suRu18-XajHYIK0sKWRIIgYL16U2LKMdEYhyk-STV1jhndVNubNsr-1AilNtCyv8LKTEMfH5NVS5crrFqqFv3d4qAslTGIniHk7d23th__2lojAjiF77Tk5w</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Bala, G.</creator><creator>Rood, R. B.</creator><creator>Mirin, A.</creator><creator>McClean, J.</creator><creator>Achutarao, Krishna</creator><creator>Bader, D.</creator><creator>Gleckler, P.</creator><creator>Neale, R.</creator><creator>Rasch, P.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20080401</creationdate><title>Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution</title><author>Bala, G. ; Rood, R. B. ; Mirin, A. ; McClean, J. ; Achutarao, Krishna ; Bader, D. ; Gleckler, P. ; Neale, R. ; Rasch, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Antarctic circulation</topic><topic>Antarctic Circumpolar Current</topic><topic>Approximation</topic><topic>Atmosphere</topic><topic>Atmospheric dynamics</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate system</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Control simulation</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluid dynamics</topic><topic>General circulation models</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Global climate models</topic><topic>Ice</topic><topic>Ice cover</topic><topic>Ice models</topic><topic>Ice thickness</topic><topic>Intergovernmental Panel on Climate Change</topic><topic>Latitude</topic><topic>Longitude</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Modeling</topic><topic>Modelling</topic><topic>Numerical methods</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Precipitation</topic><topic>Resolution</topic><topic>Sea ice</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Simulation</topic><topic>Simulations</topic><topic>Spectral methods</topic><topic>Surface temperature</topic><topic>Surface wind</topic><topic>Viscosity</topic><topic>Water circulation</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bala, G.</creatorcontrib><creatorcontrib>Rood, R. B.</creatorcontrib><creatorcontrib>Mirin, A.</creatorcontrib><creatorcontrib>McClean, J.</creatorcontrib><creatorcontrib>Achutarao, Krishna</creatorcontrib><creatorcontrib>Bader, D.</creatorcontrib><creatorcontrib>Gleckler, P.</creatorcontrib><creatorcontrib>Neale, R.</creatorcontrib><creatorcontrib>Rasch, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bala, G.</au><au>Rood, R. B.</au><au>Mirin, A.</au><au>McClean, J.</au><au>Achutarao, Krishna</au><au>Bader, D.</au><au>Gleckler, P.</au><au>Neale, R.</au><au>Rasch, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution</atitle><jtitle>Journal of climate</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>21</volume><issue>7</issue><spage>1467</spage><epage>1486</epage><pages>1467-1486</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A simulation of the present-day climate by the Community Climate System Model version 3 (CCSM3) that uses a Finite Volume (FV) numerical method for solving the equations governing the atmospheric dynamics is presented. The simulation is compared to observations and to the well-documented simulation by the standard CCSM3, which uses the Eulerian spectral method for the atmospheric dynamics. The atmospheric component in the simulation herein uses a 1° latitude × 1.25° longitude grid, which is a slightly finer resolution than the T85-grid used in the spectral transform. As in the T85 simulation, the ocean and ice models use a nominal 1-degree grid. Although the physical parameterizations are the same and the resolution is comparable to the standard model, substantial testing and slight retuning were required to obtain an acceptable control simulation. There are significant improvements in the simulation of the surface wind stress and sea surface temperature. Improvements are also seen in the simulations of the total variance in the tropical Pacific, the spatial pattern of ice thickness distribution in the Arctic, and the vertically integrated ocean circulation in the Antarctic Circumpolar Current. The results herein demonstrate that the FV version of the CCSM coupled model is a state-of-the-art climate model whose simulation capabilities are in the class of those used for Intergovernmental Panel on Climate Change (IPCC) assessments. The simulated climate is very similar to that of the T85 version in terms of its biases, and more like the T85 model than the other IPCC models.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2007JCLI2060.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2008-04, Vol.21 (7), p.1467-1486
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2818802102
source JSTOR Archival Journals and Primary Sources Collection
subjects Antarctic circulation
Antarctic Circumpolar Current
Approximation
Atmosphere
Atmospheric dynamics
Atmospheric models
Atmospherics
Climate change
Climate models
Climate system
Climatology. Bioclimatology. Climate change
Control simulation
Data analysis
Datasets
Dynamical systems
Dynamics
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid dynamics
General circulation models
Geophysics. Techniques, methods, instrumentation and models
Global climate models
Ice
Ice cover
Ice models
Ice thickness
Intergovernmental Panel on Climate Change
Latitude
Longitude
Mathematical models
Meteorology
Methods
Modeling
Modelling
Numerical methods
Ocean circulation
Ocean currents
Ocean models
Oceans
Precipitation
Resolution
Sea ice
Sea surface
Sea surface temperature
Simulation
Simulations
Spectral methods
Surface temperature
Surface wind
Viscosity
Water circulation
Weather forecasting
Wind
Wind stress
title Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20a%20CCSM3%20Simulation%20with%20a%20Finite%20Volume%20Dynamical%20Core%20for%20the%20Atmosphere%20at%201%C2%B0%20Latitude%20%C3%97%201.25%C2%B0%20Longitude%20Resolution&rft.jtitle=Journal%20of%20climate&rft.au=Bala,%20G.&rft.date=2008-04-01&rft.volume=21&rft.issue=7&rft.spage=1467&rft.epage=1486&rft.pages=1467-1486&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2007JCLI2060.1&rft_dat=%3Cjstor_proqu%3E26260220%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3011-f8924725aec00a406818b92bac99b1aa53b0b75154923cc7d180f52edee254b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222914813&rft_id=info:pmid/&rft_jstor_id=26260220&rfr_iscdi=true