Loading…

Solving the Euler–Poisson–Darboux Equation of Fractional Order

Interest in fractional ordinary and partial differential equations has been steadily increasing in the recent decades. This is due to the necessity of modeling the processes whose current state depends significantly on the previous ones, i.e., the so-called systems with residual memory. We consider...

Full description

Saved in:
Bibliographic Details
Published in:Siberian mathematical journal 2023-05, Vol.64 (3), p.707-719
Main Authors: Dzarakhohov, A. V., Shishkina, E. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c311t-20039dcc43634576ace34307caba89c8f0a63590a9f4ba817eeb92118e2468663
container_end_page 719
container_issue 3
container_start_page 707
container_title Siberian mathematical journal
container_volume 64
creator Dzarakhohov, A. V.
Shishkina, E. L.
description Interest in fractional ordinary and partial differential equations has been steadily increasing in the recent decades. This is due to the necessity of modeling the processes whose current state depends significantly on the previous ones, i.e., the so-called systems with residual memory. We consider the Cauchy problem for the one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differential operator of fractional order in time being the left-sided fractional Bessel operator. At the same time, we use the ordinary differential operator in the space variable of the second order. We reveal the connection between the Meyer and Laplace transform which is obtained by the Poisson transform and presents a special case of the relation with the Obreshkov transformation. We prove the theorem that yields the conditions of the existence of a solution to the problem by using the Meyer transform. In this case, a solution to the problem is represented explicitly in terms of the generalized Green’s function that determines the generalized hypergeometric Fox -function.
doi_str_mv 10.1134/S0037446623030187
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2818837309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818837309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-20039dcc43634576ace34307caba89c8f0a63590a9f4ba817eeb92118e2468663</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwHX0Ttzp_NYSm1VKFSorsNkOqkpMdPOJKI7_8Ef8Fv8FL_EhAouxNU93PPgcAg5pXBOKfKLBQBKzoVgCAhUyT0yoCOJqWYC9smgp9OePyRHMa4BKIDQAzJe-Oq5rFdJ8-iSSVu58PX2fufLGH3doSsTct--fH5Mtq1pSl8nvkimwdgemyqZh6ULx-SgMFV0Jz93SB6mk_vxTTqbX9-OL2epRUqblHUd9NJajgL5SApjHXIEaU1ulLaqACNwpMHogncfKp3LNaNUOcaFEgKH5GyXuwl-27rYZGvfhq5GzJiiSqFE0J2K7lQ2-BiDK7JNKJ9MeM0oZP1W2Z-tOg_beWKnrVcu_Cb_b_oGlfVsTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818837309</pqid></control><display><type>article</type><title>Solving the Euler–Poisson–Darboux Equation of Fractional Order</title><source>Springer Link</source><creator>Dzarakhohov, A. V. ; Shishkina, E. L.</creator><creatorcontrib>Dzarakhohov, A. V. ; Shishkina, E. L.</creatorcontrib><description>Interest in fractional ordinary and partial differential equations has been steadily increasing in the recent decades. This is due to the necessity of modeling the processes whose current state depends significantly on the previous ones, i.e., the so-called systems with residual memory. We consider the Cauchy problem for the one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differential operator of fractional order in time being the left-sided fractional Bessel operator. At the same time, we use the ordinary differential operator in the space variable of the second order. We reveal the connection between the Meyer and Laplace transform which is obtained by the Poisson transform and presents a special case of the relation with the Obreshkov transformation. We prove the theorem that yields the conditions of the existence of a solution to the problem by using the Meyer transform. In this case, a solution to the problem is represented explicitly in terms of the generalized Green’s function that determines the generalized hypergeometric Fox -function.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446623030187</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cauchy problems ; Existence theorems ; Green's functions ; Laplace transforms ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial differential equations</subject><ispartof>Siberian mathematical journal, 2023-05, Vol.64 (3), p.707-719</ispartof><rights>Pleiades Publishing, Ltd. 2023. Russian Text © The Author(s), 2022, published in Vladikavkazskii Matematicheskii Zhurnal, 2022, Vol. 24, No. 2, pp. 85–100.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-20039dcc43634576ace34307caba89c8f0a63590a9f4ba817eeb92118e2468663</cites><orcidid>0000-0003-4083-1207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dzarakhohov, A. V.</creatorcontrib><creatorcontrib>Shishkina, E. L.</creatorcontrib><title>Solving the Euler–Poisson–Darboux Equation of Fractional Order</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>Interest in fractional ordinary and partial differential equations has been steadily increasing in the recent decades. This is due to the necessity of modeling the processes whose current state depends significantly on the previous ones, i.e., the so-called systems with residual memory. We consider the Cauchy problem for the one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differential operator of fractional order in time being the left-sided fractional Bessel operator. At the same time, we use the ordinary differential operator in the space variable of the second order. We reveal the connection between the Meyer and Laplace transform which is obtained by the Poisson transform and presents a special case of the relation with the Obreshkov transformation. We prove the theorem that yields the conditions of the existence of a solution to the problem by using the Meyer transform. In this case, a solution to the problem is represented explicitly in terms of the generalized Green’s function that determines the generalized hypergeometric Fox -function.</description><subject>Cauchy problems</subject><subject>Existence theorems</subject><subject>Green's functions</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKw0AUHUTBWv0AdwHX0Ttzp_NYSm1VKFSorsNkOqkpMdPOJKI7_8Ef8Fv8FL_EhAouxNU93PPgcAg5pXBOKfKLBQBKzoVgCAhUyT0yoCOJqWYC9smgp9OePyRHMa4BKIDQAzJe-Oq5rFdJ8-iSSVu58PX2fufLGH3doSsTct--fH5Mtq1pSl8nvkimwdgemyqZh6ULx-SgMFV0Jz93SB6mk_vxTTqbX9-OL2epRUqblHUd9NJajgL5SApjHXIEaU1ulLaqACNwpMHogncfKp3LNaNUOcaFEgKH5GyXuwl-27rYZGvfhq5GzJiiSqFE0J2K7lQ2-BiDK7JNKJ9MeM0oZP1W2Z-tOg_beWKnrVcu_Cb_b_oGlfVsTw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Dzarakhohov, A. V.</creator><creator>Shishkina, E. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4083-1207</orcidid></search><sort><creationdate>20230501</creationdate><title>Solving the Euler–Poisson–Darboux Equation of Fractional Order</title><author>Dzarakhohov, A. V. ; Shishkina, E. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-20039dcc43634576ace34307caba89c8f0a63590a9f4ba817eeb92118e2468663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy problems</topic><topic>Existence theorems</topic><topic>Green's functions</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dzarakhohov, A. V.</creatorcontrib><creatorcontrib>Shishkina, E. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dzarakhohov, A. V.</au><au>Shishkina, E. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Euler–Poisson–Darboux Equation of Fractional Order</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>64</volume><issue>3</issue><spage>707</spage><epage>719</epage><pages>707-719</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>Interest in fractional ordinary and partial differential equations has been steadily increasing in the recent decades. This is due to the necessity of modeling the processes whose current state depends significantly on the previous ones, i.e., the so-called systems with residual memory. We consider the Cauchy problem for the one-dimensional, homogeneous Euler–Poisson–Darboux equation with a differential operator of fractional order in time being the left-sided fractional Bessel operator. At the same time, we use the ordinary differential operator in the space variable of the second order. We reveal the connection between the Meyer and Laplace transform which is obtained by the Poisson transform and presents a special case of the relation with the Obreshkov transformation. We prove the theorem that yields the conditions of the existence of a solution to the problem by using the Meyer transform. In this case, a solution to the problem is represented explicitly in terms of the generalized Green’s function that determines the generalized hypergeometric Fox -function.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446623030187</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4083-1207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2023-05, Vol.64 (3), p.707-719
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2818837309
source Springer Link
subjects Cauchy problems
Existence theorems
Green's functions
Laplace transforms
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial differential equations
title Solving the Euler–Poisson–Darboux Equation of Fractional Order
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Euler%E2%80%93Poisson%E2%80%93Darboux%C2%A0Equation%20of%20Fractional%20Order&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Dzarakhohov,%20A.%20V.&rft.date=2023-05-01&rft.volume=64&rft.issue=3&rft.spage=707&rft.epage=719&rft.pages=707-719&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446623030187&rft_dat=%3Cproquest_cross%3E2818837309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-20039dcc43634576ace34307caba89c8f0a63590a9f4ba817eeb92118e2468663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2818837309&rft_id=info:pmid/&rfr_iscdi=true