Loading…
Fault diagnosis and fault-tolerant control design for neutral time delay system
This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and t...
Saved in:
Published in: | Automatika 2023-07, Vol.64 (3), p.422-430 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3 |
container_end_page | 430 |
container_issue | 3 |
container_start_page | 422 |
container_title | Automatika |
container_volume | 64 |
creator | Rabeb, Benjemaa Aicha, Elhsoumi Mohamed Naceur, Abdelkrim |
description | This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach. |
doi_str_mv | 10.1080/00051144.2023.2176855 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2819149900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7c7e74f5e0f349e4b31f6b2d18a66858</doaj_id><sourcerecordid>2819149900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</originalsourceid><addsrcrecordid>eNp9UctqHDEQFCGBbOx8QkDg82z0Go10szFxYjD4Yp-FRmotWrQjW9IS9u-jyTo5-tR0UVXdVCH0jZItJYp8J4SMlAqxZYTxLaOTVOP4AW2oEmrgXJGPaLNyhpX0GX2pdd83ySXZoMc7e0wN-2h3S66xYrt4HFZsaDlBsUvDLi-t5IQ91LhbcMgFL3BsxSbc4gE6nuwJ11NtcLhEn4JNFb6-zQv0fPfj6fbX8PD48_725mFwXNE2CNDMCnBuFmyWJOhxco5yJb0XlFEyAZFBTEFyLawPQKVyQTGYtZ6YnwO_QPdnX5_t3ryUeLDlZLKN5i-Qy87Y0qJLYCY3wSTCCCRwoUHMnAY5M0-VlT0p1b2uzl4vJb8eoTazz8ey9PcNU1RToTUhnTWeWa7kWguE_1cpMWsP5l8PZu3BvPXQdddnXVx6cgf7O5fkTbOnlEvo-bpYDX_f4g9cJY6s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819149900</pqid></control><display><type>article</type><title>Fault diagnosis and fault-tolerant control design for neutral time delay system</title><source>Taylor & Francis Open Access(OpenAccess)</source><creator>Rabeb, Benjemaa ; Aicha, Elhsoumi ; Mohamed Naceur, Abdelkrim</creator><creatorcontrib>Rabeb, Benjemaa ; Aicha, Elhsoumi ; Mohamed Naceur, Abdelkrim</creatorcontrib><description>This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.</description><identifier>ISSN: 0005-1144</identifier><identifier>EISSN: 1848-3380</identifier><identifier>DOI: 10.1080/00051144.2023.2176855</identifier><language>eng</language><publisher>Ljubljana: Taylor & Francis</publisher><subject>Actuators ; adaptive observer ; Closed loops ; Control systems ; Control theory ; fault additive control ; Fault diagnosis ; Fault tolerance ; Feedback control ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; neutral variable time delay ; State feedback ; Systems stability ; Time delay systems ; Transmission line ; Transmission lines</subject><ispartof>Automatika, 2023-07, Vol.64 (3), p.422-430</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</citedby><cites>FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00051144.2023.2176855$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00051144.2023.2176855$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Rabeb, Benjemaa</creatorcontrib><creatorcontrib>Aicha, Elhsoumi</creatorcontrib><creatorcontrib>Mohamed Naceur, Abdelkrim</creatorcontrib><title>Fault diagnosis and fault-tolerant control design for neutral time delay system</title><title>Automatika</title><description>This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.</description><subject>Actuators</subject><subject>adaptive observer</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Control theory</subject><subject>fault additive control</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Feedback control</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>neutral variable time delay</subject><subject>State feedback</subject><subject>Systems stability</subject><subject>Time delay systems</subject><subject>Transmission line</subject><subject>Transmission lines</subject><issn>0005-1144</issn><issn>1848-3380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctqHDEQFCGBbOx8QkDg82z0Go10szFxYjD4Yp-FRmotWrQjW9IS9u-jyTo5-tR0UVXdVCH0jZItJYp8J4SMlAqxZYTxLaOTVOP4AW2oEmrgXJGPaLNyhpX0GX2pdd83ySXZoMc7e0wN-2h3S66xYrt4HFZsaDlBsUvDLi-t5IQ91LhbcMgFL3BsxSbc4gE6nuwJ11NtcLhEn4JNFb6-zQv0fPfj6fbX8PD48_725mFwXNE2CNDMCnBuFmyWJOhxco5yJb0XlFEyAZFBTEFyLawPQKVyQTGYtZ6YnwO_QPdnX5_t3ryUeLDlZLKN5i-Qy87Y0qJLYCY3wSTCCCRwoUHMnAY5M0-VlT0p1b2uzl4vJb8eoTazz8ey9PcNU1RToTUhnTWeWa7kWguE_1cpMWsP5l8PZu3BvPXQdddnXVx6cgf7O5fkTbOnlEvo-bpYDX_f4g9cJY6s</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Rabeb, Benjemaa</creator><creator>Aicha, Elhsoumi</creator><creator>Mohamed Naceur, Abdelkrim</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20230703</creationdate><title>Fault diagnosis and fault-tolerant control design for neutral time delay system</title><author>Rabeb, Benjemaa ; Aicha, Elhsoumi ; Mohamed Naceur, Abdelkrim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>adaptive observer</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Control theory</topic><topic>fault additive control</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Feedback control</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>neutral variable time delay</topic><topic>State feedback</topic><topic>Systems stability</topic><topic>Time delay systems</topic><topic>Transmission line</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabeb, Benjemaa</creatorcontrib><creatorcontrib>Aicha, Elhsoumi</creatorcontrib><creatorcontrib>Mohamed Naceur, Abdelkrim</creatorcontrib><collection>Taylor & Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Automatika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabeb, Benjemaa</au><au>Aicha, Elhsoumi</au><au>Mohamed Naceur, Abdelkrim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis and fault-tolerant control design for neutral time delay system</atitle><jtitle>Automatika</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>64</volume><issue>3</issue><spage>422</spage><epage>430</epage><pages>422-430</pages><issn>0005-1144</issn><eissn>1848-3380</eissn><abstract>This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.</abstract><cop>Ljubljana</cop><pub>Taylor & Francis</pub><doi>10.1080/00051144.2023.2176855</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1144 |
ispartof | Automatika, 2023-07, Vol.64 (3), p.422-430 |
issn | 0005-1144 1848-3380 |
language | eng |
recordid | cdi_proquest_journals_2819149900 |
source | Taylor & Francis Open Access(OpenAccess) |
subjects | Actuators adaptive observer Closed loops Control systems Control theory fault additive control Fault diagnosis Fault tolerance Feedback control Liapunov functions Linear matrix inequalities Mathematical analysis neutral variable time delay State feedback Systems stability Time delay systems Transmission line Transmission lines |
title | Fault diagnosis and fault-tolerant control design for neutral time delay system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20and%20fault-tolerant%20control%20design%20for%20neutral%20time%20delay%20system&rft.jtitle=Automatika&rft.au=Rabeb,%20Benjemaa&rft.date=2023-07-03&rft.volume=64&rft.issue=3&rft.spage=422&rft.epage=430&rft.pages=422-430&rft.issn=0005-1144&rft.eissn=1848-3380&rft_id=info:doi/10.1080/00051144.2023.2176855&rft_dat=%3Cproquest_infor%3E2819149900%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819149900&rft_id=info:pmid/&rfr_iscdi=true |