Loading…

Fault diagnosis and fault-tolerant control design for neutral time delay system

This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and t...

Full description

Saved in:
Bibliographic Details
Published in:Automatika 2023-07, Vol.64 (3), p.422-430
Main Authors: Rabeb, Benjemaa, Aicha, Elhsoumi, Mohamed Naceur, Abdelkrim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3
cites cdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3
container_end_page 430
container_issue 3
container_start_page 422
container_title Automatika
container_volume 64
creator Rabeb, Benjemaa
Aicha, Elhsoumi
Mohamed Naceur, Abdelkrim
description This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.
doi_str_mv 10.1080/00051144.2023.2176855
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2819149900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7c7e74f5e0f349e4b31f6b2d18a66858</doaj_id><sourcerecordid>2819149900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</originalsourceid><addsrcrecordid>eNp9UctqHDEQFCGBbOx8QkDg82z0Go10szFxYjD4Yp-FRmotWrQjW9IS9u-jyTo5-tR0UVXdVCH0jZItJYp8J4SMlAqxZYTxLaOTVOP4AW2oEmrgXJGPaLNyhpX0GX2pdd83ySXZoMc7e0wN-2h3S66xYrt4HFZsaDlBsUvDLi-t5IQ91LhbcMgFL3BsxSbc4gE6nuwJ11NtcLhEn4JNFb6-zQv0fPfj6fbX8PD48_725mFwXNE2CNDMCnBuFmyWJOhxco5yJb0XlFEyAZFBTEFyLawPQKVyQTGYtZ6YnwO_QPdnX5_t3ryUeLDlZLKN5i-Qy87Y0qJLYCY3wSTCCCRwoUHMnAY5M0-VlT0p1b2uzl4vJb8eoTazz8ey9PcNU1RToTUhnTWeWa7kWguE_1cpMWsP5l8PZu3BvPXQdddnXVx6cgf7O5fkTbOnlEvo-bpYDX_f4g9cJY6s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819149900</pqid></control><display><type>article</type><title>Fault diagnosis and fault-tolerant control design for neutral time delay system</title><source>Taylor &amp; Francis Open Access(OpenAccess)</source><creator>Rabeb, Benjemaa ; Aicha, Elhsoumi ; Mohamed Naceur, Abdelkrim</creator><creatorcontrib>Rabeb, Benjemaa ; Aicha, Elhsoumi ; Mohamed Naceur, Abdelkrim</creatorcontrib><description>This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.</description><identifier>ISSN: 0005-1144</identifier><identifier>EISSN: 1848-3380</identifier><identifier>DOI: 10.1080/00051144.2023.2176855</identifier><language>eng</language><publisher>Ljubljana: Taylor &amp; Francis</publisher><subject>Actuators ; adaptive observer ; Closed loops ; Control systems ; Control theory ; fault additive control ; Fault diagnosis ; Fault tolerance ; Feedback control ; Liapunov functions ; Linear matrix inequalities ; Mathematical analysis ; neutral variable time delay ; State feedback ; Systems stability ; Time delay systems ; Transmission line ; Transmission lines</subject><ispartof>Automatika, 2023-07, Vol.64 (3), p.422-430</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</citedby><cites>FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00051144.2023.2176855$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00051144.2023.2176855$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Rabeb, Benjemaa</creatorcontrib><creatorcontrib>Aicha, Elhsoumi</creatorcontrib><creatorcontrib>Mohamed Naceur, Abdelkrim</creatorcontrib><title>Fault diagnosis and fault-tolerant control design for neutral time delay system</title><title>Automatika</title><description>This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.</description><subject>Actuators</subject><subject>adaptive observer</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Control theory</subject><subject>fault additive control</subject><subject>Fault diagnosis</subject><subject>Fault tolerance</subject><subject>Feedback control</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical analysis</subject><subject>neutral variable time delay</subject><subject>State feedback</subject><subject>Systems stability</subject><subject>Time delay systems</subject><subject>Transmission line</subject><subject>Transmission lines</subject><issn>0005-1144</issn><issn>1848-3380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctqHDEQFCGBbOx8QkDg82z0Go10szFxYjD4Yp-FRmotWrQjW9IS9u-jyTo5-tR0UVXdVCH0jZItJYp8J4SMlAqxZYTxLaOTVOP4AW2oEmrgXJGPaLNyhpX0GX2pdd83ySXZoMc7e0wN-2h3S66xYrt4HFZsaDlBsUvDLi-t5IQ91LhbcMgFL3BsxSbc4gE6nuwJ11NtcLhEn4JNFb6-zQv0fPfj6fbX8PD48_725mFwXNE2CNDMCnBuFmyWJOhxco5yJb0XlFEyAZFBTEFyLawPQKVyQTGYtZ6YnwO_QPdnX5_t3ryUeLDlZLKN5i-Qy87Y0qJLYCY3wSTCCCRwoUHMnAY5M0-VlT0p1b2uzl4vJb8eoTazz8ey9PcNU1RToTUhnTWeWa7kWguE_1cpMWsP5l8PZu3BvPXQdddnXVx6cgf7O5fkTbOnlEvo-bpYDX_f4g9cJY6s</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Rabeb, Benjemaa</creator><creator>Aicha, Elhsoumi</creator><creator>Mohamed Naceur, Abdelkrim</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20230703</creationdate><title>Fault diagnosis and fault-tolerant control design for neutral time delay system</title><author>Rabeb, Benjemaa ; Aicha, Elhsoumi ; Mohamed Naceur, Abdelkrim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuators</topic><topic>adaptive observer</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Control theory</topic><topic>fault additive control</topic><topic>Fault diagnosis</topic><topic>Fault tolerance</topic><topic>Feedback control</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical analysis</topic><topic>neutral variable time delay</topic><topic>State feedback</topic><topic>Systems stability</topic><topic>Time delay systems</topic><topic>Transmission line</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabeb, Benjemaa</creatorcontrib><creatorcontrib>Aicha, Elhsoumi</creatorcontrib><creatorcontrib>Mohamed Naceur, Abdelkrim</creatorcontrib><collection>Taylor &amp; Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Automatika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabeb, Benjemaa</au><au>Aicha, Elhsoumi</au><au>Mohamed Naceur, Abdelkrim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis and fault-tolerant control design for neutral time delay system</atitle><jtitle>Automatika</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>64</volume><issue>3</issue><spage>422</spage><epage>430</epage><pages>422-430</pages><issn>0005-1144</issn><eissn>1848-3380</eissn><abstract>This paper presents a new approach of fault-tolerant control (FTC) for the transmission line as a neutral variable time-delay system. The main goal of this work guarantees faulty neutral variable time delay system stabilization using the state feedback control design based on Lyapunov function and the Linear Matrix Inequality resolution. The use of the FTC method is to achieve actuator and sensor fault compensation. This method is based on two steps. The first one is the synthesis of a nominal control, which remains to maintain the closed-loop system stability. The second step is based on adding a new control law to the nominal one to compensate the fault effect on system behaviour and maintain the desired performance in the closed loop system. Then, a conception of an adaptive observer is used to detect and estimate the fault. Finally, the developed approach is applied for the transmission line. The given results are presented to prove the effectiveness of this approach.</abstract><cop>Ljubljana</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00051144.2023.2176855</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1144
ispartof Automatika, 2023-07, Vol.64 (3), p.422-430
issn 0005-1144
1848-3380
language eng
recordid cdi_proquest_journals_2819149900
source Taylor & Francis Open Access(OpenAccess)
subjects Actuators
adaptive observer
Closed loops
Control systems
Control theory
fault additive control
Fault diagnosis
Fault tolerance
Feedback control
Liapunov functions
Linear matrix inequalities
Mathematical analysis
neutral variable time delay
State feedback
Systems stability
Time delay systems
Transmission line
Transmission lines
title Fault diagnosis and fault-tolerant control design for neutral time delay system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20and%20fault-tolerant%20control%20design%20for%20neutral%20time%20delay%20system&rft.jtitle=Automatika&rft.au=Rabeb,%20Benjemaa&rft.date=2023-07-03&rft.volume=64&rft.issue=3&rft.spage=422&rft.epage=430&rft.pages=422-430&rft.issn=0005-1144&rft.eissn=1848-3380&rft_id=info:doi/10.1080/00051144.2023.2176855&rft_dat=%3Cproquest_infor%3E2819149900%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-4e92a4eccb42b60f957cc1386dd412107e06f47f6394adfe168cf82eb9972dbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819149900&rft_id=info:pmid/&rfr_iscdi=true