Loading…
Manifold Diffusion Fields
We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-Euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami...
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Elhag, Ahmed A Wang, Yuyang Susskind, Joshua M Bautista, Miguel Angel |
description | We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-Euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. In addition, we show that MDF generalizes to the case where the training set contains functions on different manifolds. Empirical results on multiple datasets and manifolds including challenging scientific problems like weather prediction or molecular conformation show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2819555102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2819555102</sourcerecordid><originalsourceid>FETCH-proquest_journals_28195551023</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9E3My0zLz0lRcMlMSystzszPU3DLTM1JKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjC0NLU1NTQwMjY-JUAQCFnSpS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819555102</pqid></control><display><type>article</type><title>Manifold Diffusion Fields</title><source>ProQuest Publicly Available Content database</source><creator>Elhag, Ahmed A ; Wang, Yuyang ; Susskind, Joshua M ; Bautista, Miguel Angel</creator><creatorcontrib>Elhag, Ahmed A ; Wang, Yuyang ; Susskind, Joshua M ; Bautista, Miguel Angel</creatorcontrib><description>We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-Euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. In addition, we show that MDF generalizes to the case where the training set contains functions on different manifolds. Empirical results on multiple datasets and manifolds including challenging scientific problems like weather prediction or molecular conformation show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Coordinates ; Eigenvectors ; Empirical analysis ; Operators (mathematics) ; Parameterization ; Riemann manifold</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2819555102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Elhag, Ahmed A</creatorcontrib><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Susskind, Joshua M</creatorcontrib><creatorcontrib>Bautista, Miguel Angel</creatorcontrib><title>Manifold Diffusion Fields</title><title>arXiv.org</title><description>We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-Euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. In addition, we show that MDF generalizes to the case where the training set contains functions on different manifolds. Empirical results on multiple datasets and manifolds including challenging scientific problems like weather prediction or molecular conformation show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.</description><subject>Continuity (mathematics)</subject><subject>Coordinates</subject><subject>Eigenvectors</subject><subject>Empirical analysis</subject><subject>Operators (mathematics)</subject><subject>Parameterization</subject><subject>Riemann manifold</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ9E3My0zLz0lRcMlMSystzszPU3DLTM1JKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjC0NLU1NTQwMjY-JUAQCFnSpS</recordid><startdate>20240120</startdate><enddate>20240120</enddate><creator>Elhag, Ahmed A</creator><creator>Wang, Yuyang</creator><creator>Susskind, Joshua M</creator><creator>Bautista, Miguel Angel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240120</creationdate><title>Manifold Diffusion Fields</title><author>Elhag, Ahmed A ; Wang, Yuyang ; Susskind, Joshua M ; Bautista, Miguel Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28195551023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Continuity (mathematics)</topic><topic>Coordinates</topic><topic>Eigenvectors</topic><topic>Empirical analysis</topic><topic>Operators (mathematics)</topic><topic>Parameterization</topic><topic>Riemann manifold</topic><toplevel>online_resources</toplevel><creatorcontrib>Elhag, Ahmed A</creatorcontrib><creatorcontrib>Wang, Yuyang</creatorcontrib><creatorcontrib>Susskind, Joshua M</creatorcontrib><creatorcontrib>Bautista, Miguel Angel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elhag, Ahmed A</au><au>Wang, Yuyang</au><au>Susskind, Joshua M</au><au>Bautista, Miguel Angel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Manifold Diffusion Fields</atitle><jtitle>arXiv.org</jtitle><date>2024-01-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-Euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. In addition, we show that MDF generalizes to the case where the training set contains functions on different manifolds. Empirical results on multiple datasets and manifolds including challenging scientific problems like weather prediction or molecular conformation show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2819555102 |
source | ProQuest Publicly Available Content database |
subjects | Continuity (mathematics) Coordinates Eigenvectors Empirical analysis Operators (mathematics) Parameterization Riemann manifold |
title | Manifold Diffusion Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Manifold%20Diffusion%20Fields&rft.jtitle=arXiv.org&rft.au=Elhag,%20Ahmed%20A&rft.date=2024-01-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2819555102%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28195551023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819555102&rft_id=info:pmid/&rfr_iscdi=true |