Loading…

Updating multi-fidelity structural dynamic models for flexible wings with feed-forward neural network

In multidisciplinary design optimization of aerospace structures (e.g., a flexible wing), it may be convenient and practical to break such a complex problem into multi-fidelity, multi-stage design problems. Structural model updating is needed in multi-fidelity, multi-stage optimizations to ensure th...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2023-06, Vol.237 (7), p.1499-1510
Main Authors: Huang, Yanxin, Su, Weihua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In multidisciplinary design optimization of aerospace structures (e.g., a flexible wing), it may be convenient and practical to break such a complex problem into multi-fidelity, multi-stage design problems. Structural model updating is needed in multi-fidelity, multi-stage optimizations to ensure the consistency of models with different fidelity. However, due to the inequality in structural parameters, there exists a fundamental difficulty in the model updating from a lower fidelity model to a higher fidelity model. In this paper, a feed-forward neural network is applied to determine the structural dynamic characteristics of a higher fidelity model based upon a lower fidelity model. The feasibility of this approach is demonstrated by updating beam-like wings to a thin shell-based model and a one-cell wing box model, respectively. The quality and accuracy of model updating using the proposed method are also discussed regarding the neural network structure and sample size.
ISSN:0954-4100
2041-3025
DOI:10.1177/09544100221128998