Loading…
Updating multi-fidelity structural dynamic models for flexible wings with feed-forward neural network
In multidisciplinary design optimization of aerospace structures (e.g., a flexible wing), it may be convenient and practical to break such a complex problem into multi-fidelity, multi-stage design problems. Structural model updating is needed in multi-fidelity, multi-stage optimizations to ensure th...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2023-06, Vol.237 (7), p.1499-1510 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In multidisciplinary design optimization of aerospace structures (e.g., a flexible wing), it may be convenient and practical to break such a complex problem into multi-fidelity, multi-stage design problems. Structural model updating is needed in multi-fidelity, multi-stage optimizations to ensure the consistency of models with different fidelity. However, due to the inequality in structural parameters, there exists a fundamental difficulty in the model updating from a lower fidelity model to a higher fidelity model. In this paper, a feed-forward neural network is applied to determine the structural dynamic characteristics of a higher fidelity model based upon a lower fidelity model. The feasibility of this approach is demonstrated by updating beam-like wings to a thin shell-based model and a one-cell wing box model, respectively. The quality and accuracy of model updating using the proposed method are also discussed regarding the neural network structure and sample size. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/09544100221128998 |