Loading…

Mechanical and electrical properties of a modified carbon nanotube-mediated hydrogel as a strain sensor

This study adopted a one-pot method to prepare a composite solution, which uses Polyvinyl Alcohol (PVA) as the matrix, silanation-modified carbon nanotubes (S-CNTs) as the conductive mediators, dimethyl sulfoxide (DMSO) aqueous solution and glycerol as the organic solvent, and finally the composite...

Full description

Saved in:
Bibliographic Details
Published in:New journal of chemistry 2023-05, Vol.47 (21), p.149-1414
Main Authors: Huang, Xinmin, Yan, Zhongjie, Yang, Lianhe, Meng, Lingling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3
cites cdi_FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3
container_end_page 1414
container_issue 21
container_start_page 149
container_title New journal of chemistry
container_volume 47
creator Huang, Xinmin
Yan, Zhongjie
Yang, Lianhe
Meng, Lingling
description This study adopted a one-pot method to prepare a composite solution, which uses Polyvinyl Alcohol (PVA) as the matrix, silanation-modified carbon nanotubes (S-CNTs) as the conductive mediators, dimethyl sulfoxide (DMSO) aqueous solution and glycerol as the organic solvent, and finally the composite solution was repeatedly freeze-thawed to prepare a composite hydrogel. By controlling the addition amount of S-CNTs, its effect on the properties of the composite hydrogels was investigated. The microstructure, mechanical properties, and electrical properties of the composite hydrogel were characterized and the results showed that the S-CNTs-0.3/PVA hydrogel had good mechanical properties (tensile strength: 0.53 MPa, tensile modulus: 410 kPa, toughness: 0.97 MJ m −3 and elongation at break: 294.81%) and excellent self-recovery performance. The assembled sensor can monitor finger bending and strain occurrence, indicating its potential application in human motion monitoring energy-sensing devices. Conductive hydrogels with high mechanical toughness, self-recovery ability, and electrical conductivity were prepared by a one-pot method.
doi_str_mv 10.1039/d3nj00520h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2820279203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820279203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3</originalsourceid><addsrcrecordid>eNpFkMtLAzEQh4MoWKsX70LAm7Ca12Y3R6mPKlUvel7ymLRb2qQm20P_e6MVPc0M8_Gb4UPonJJrSri6cTwsCakZWRygEeVSVYpJelh6KkRFaiGP0UnOhaG0kXSE5i9gFzr0Vq-wDg7DCuyQfsZNihtIQw8ZR481XkfX-x4ctjqZGHDQIQ5bA9UaXK-HsljsXIpzKEm58HlIug84Q8gxnaIjr1cZzn7rGH083L9PptXs7fFpcjurLGvpUCnFKam54N7RVgNnxEIDzFoC0kpjiKi5N1KAc446qVuhLIAX2rNGmNbwMbrc55bvP7eQh24ZtymUkx1rGWGNYoQX6mpP2RRzTuC7TerXOu06Srpvkd0df33-ETkt8MUeTtn-cf-i-Re8YXFJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820279203</pqid></control><display><type>article</type><title>Mechanical and electrical properties of a modified carbon nanotube-mediated hydrogel as a strain sensor</title><source>Royal Society of Chemistry</source><creator>Huang, Xinmin ; Yan, Zhongjie ; Yang, Lianhe ; Meng, Lingling</creator><creatorcontrib>Huang, Xinmin ; Yan, Zhongjie ; Yang, Lianhe ; Meng, Lingling</creatorcontrib><description>This study adopted a one-pot method to prepare a composite solution, which uses Polyvinyl Alcohol (PVA) as the matrix, silanation-modified carbon nanotubes (S-CNTs) as the conductive mediators, dimethyl sulfoxide (DMSO) aqueous solution and glycerol as the organic solvent, and finally the composite solution was repeatedly freeze-thawed to prepare a composite hydrogel. By controlling the addition amount of S-CNTs, its effect on the properties of the composite hydrogels was investigated. The microstructure, mechanical properties, and electrical properties of the composite hydrogel were characterized and the results showed that the S-CNTs-0.3/PVA hydrogel had good mechanical properties (tensile strength: 0.53 MPa, tensile modulus: 410 kPa, toughness: 0.97 MJ m −3 and elongation at break: 294.81%) and excellent self-recovery performance. The assembled sensor can monitor finger bending and strain occurrence, indicating its potential application in human motion monitoring energy-sensing devices. Conductive hydrogels with high mechanical toughness, self-recovery ability, and electrical conductivity were prepared by a one-pot method.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d3nj00520h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous solutions ; Carbon nanotubes ; Dimethyl sulfoxide ; Electrical properties ; Elongation ; Human motion ; Hydrogels ; Mechanical properties ; Modulus of elasticity ; Polyvinyl alcohol ; Sensors ; Tensile strength</subject><ispartof>New journal of chemistry, 2023-05, Vol.47 (21), p.149-1414</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3</citedby><cites>FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3</cites><orcidid>0000-0001-7413-3621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Xinmin</creatorcontrib><creatorcontrib>Yan, Zhongjie</creatorcontrib><creatorcontrib>Yang, Lianhe</creatorcontrib><creatorcontrib>Meng, Lingling</creatorcontrib><title>Mechanical and electrical properties of a modified carbon nanotube-mediated hydrogel as a strain sensor</title><title>New journal of chemistry</title><description>This study adopted a one-pot method to prepare a composite solution, which uses Polyvinyl Alcohol (PVA) as the matrix, silanation-modified carbon nanotubes (S-CNTs) as the conductive mediators, dimethyl sulfoxide (DMSO) aqueous solution and glycerol as the organic solvent, and finally the composite solution was repeatedly freeze-thawed to prepare a composite hydrogel. By controlling the addition amount of S-CNTs, its effect on the properties of the composite hydrogels was investigated. The microstructure, mechanical properties, and electrical properties of the composite hydrogel were characterized and the results showed that the S-CNTs-0.3/PVA hydrogel had good mechanical properties (tensile strength: 0.53 MPa, tensile modulus: 410 kPa, toughness: 0.97 MJ m −3 and elongation at break: 294.81%) and excellent self-recovery performance. The assembled sensor can monitor finger bending and strain occurrence, indicating its potential application in human motion monitoring energy-sensing devices. Conductive hydrogels with high mechanical toughness, self-recovery ability, and electrical conductivity were prepared by a one-pot method.</description><subject>Aqueous solutions</subject><subject>Carbon nanotubes</subject><subject>Dimethyl sulfoxide</subject><subject>Electrical properties</subject><subject>Elongation</subject><subject>Human motion</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Polyvinyl alcohol</subject><subject>Sensors</subject><subject>Tensile strength</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLAzEQh4MoWKsX70LAm7Ca12Y3R6mPKlUvel7ymLRb2qQm20P_e6MVPc0M8_Gb4UPonJJrSri6cTwsCakZWRygEeVSVYpJelh6KkRFaiGP0UnOhaG0kXSE5i9gFzr0Vq-wDg7DCuyQfsZNihtIQw8ZR481XkfX-x4ctjqZGHDQIQ5bA9UaXK-HsljsXIpzKEm58HlIug84Q8gxnaIjr1cZzn7rGH083L9PptXs7fFpcjurLGvpUCnFKam54N7RVgNnxEIDzFoC0kpjiKi5N1KAc446qVuhLIAX2rNGmNbwMbrc55bvP7eQh24ZtymUkx1rGWGNYoQX6mpP2RRzTuC7TerXOu06Srpvkd0df33-ETkt8MUeTtn-cf-i-Re8YXFJ</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Huang, Xinmin</creator><creator>Yan, Zhongjie</creator><creator>Yang, Lianhe</creator><creator>Meng, Lingling</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope><orcidid>https://orcid.org/0000-0001-7413-3621</orcidid></search><sort><creationdate>20230530</creationdate><title>Mechanical and electrical properties of a modified carbon nanotube-mediated hydrogel as a strain sensor</title><author>Huang, Xinmin ; Yan, Zhongjie ; Yang, Lianhe ; Meng, Lingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous solutions</topic><topic>Carbon nanotubes</topic><topic>Dimethyl sulfoxide</topic><topic>Electrical properties</topic><topic>Elongation</topic><topic>Human motion</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Polyvinyl alcohol</topic><topic>Sensors</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xinmin</creatorcontrib><creatorcontrib>Yan, Zhongjie</creatorcontrib><creatorcontrib>Yang, Lianhe</creatorcontrib><creatorcontrib>Meng, Lingling</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xinmin</au><au>Yan, Zhongjie</au><au>Yang, Lianhe</au><au>Meng, Lingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and electrical properties of a modified carbon nanotube-mediated hydrogel as a strain sensor</atitle><jtitle>New journal of chemistry</jtitle><date>2023-05-30</date><risdate>2023</risdate><volume>47</volume><issue>21</issue><spage>149</spage><epage>1414</epage><pages>149-1414</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>This study adopted a one-pot method to prepare a composite solution, which uses Polyvinyl Alcohol (PVA) as the matrix, silanation-modified carbon nanotubes (S-CNTs) as the conductive mediators, dimethyl sulfoxide (DMSO) aqueous solution and glycerol as the organic solvent, and finally the composite solution was repeatedly freeze-thawed to prepare a composite hydrogel. By controlling the addition amount of S-CNTs, its effect on the properties of the composite hydrogels was investigated. The microstructure, mechanical properties, and electrical properties of the composite hydrogel were characterized and the results showed that the S-CNTs-0.3/PVA hydrogel had good mechanical properties (tensile strength: 0.53 MPa, tensile modulus: 410 kPa, toughness: 0.97 MJ m −3 and elongation at break: 294.81%) and excellent self-recovery performance. The assembled sensor can monitor finger bending and strain occurrence, indicating its potential application in human motion monitoring energy-sensing devices. Conductive hydrogels with high mechanical toughness, self-recovery ability, and electrical conductivity were prepared by a one-pot method.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nj00520h</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7413-3621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2023-05, Vol.47 (21), p.149-1414
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2820279203
source Royal Society of Chemistry
subjects Aqueous solutions
Carbon nanotubes
Dimethyl sulfoxide
Electrical properties
Elongation
Human motion
Hydrogels
Mechanical properties
Modulus of elasticity
Polyvinyl alcohol
Sensors
Tensile strength
title Mechanical and electrical properties of a modified carbon nanotube-mediated hydrogel as a strain sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20electrical%20properties%20of%20a%20modified%20carbon%20nanotube-mediated%20hydrogel%20as%20a%20strain%20sensor&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Huang,%20Xinmin&rft.date=2023-05-30&rft.volume=47&rft.issue=21&rft.spage=149&rft.epage=1414&rft.pages=149-1414&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d3nj00520h&rft_dat=%3Cproquest_cross%3E2820279203%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-993105343fd18ae320ce7e2cc0e6c6bb0453fb64eddd1d6a849ceef4af274b8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2820279203&rft_id=info:pmid/&rfr_iscdi=true