Loading…

InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition

The local and global features are both essential for automatic speech recognition (ASR). Many recent methods have verified that simply combining local and global features can further promote ASR performance. However, these methods pay less attention to the interaction of local and global features, a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-05
Main Authors: Zhi-Hao Lai, Tian-Hao, Zhang, Liu, Qi, Qian, Xinyuan, Li-Fang, Wei, Song-Lu, Chen, Chen, Feng, Xu-Cheng, Yin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhi-Hao Lai
Tian-Hao, Zhang
Liu, Qi
Qian, Xinyuan
Li-Fang, Wei
Song-Lu, Chen
Chen, Feng
Xu-Cheng, Yin
description The local and global features are both essential for automatic speech recognition (ASR). Many recent methods have verified that simply combining local and global features can further promote ASR performance. However, these methods pay less attention to the interaction of local and global features, and their series architectures are rigid to reflect local and global relationships. To address these issues, this paper proposes InterFormer for interactive local and global features fusion to learn a better representation for ASR. Specifically, we combine the convolution block with the transformer block in a parallel design. Besides, we propose a bidirectional feature interaction module (BFIM) and a selective fusion module (SFM) to implement the interaction and fusion of local and global features, respectively. Extensive experiments on public ASR datasets demonstrate the effectiveness of our proposed InterFormer and its superior performance over the other Transformer and Conformer models.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2820820863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820820863</sourcerecordid><originalsourceid>FETCH-proquest_journals_28208208633</originalsourceid><addsrcrecordid>eNqNis0KgkAUhYcgSMp3uNBasJk0aReRFbSqVm1kmq6l6Fybn54_ix4gOHDOx_kGLOBCzKJszvmIhdbWcRzzdMGTRATsstcOTU6mRbOEL0jlqhfCgZRsQOobbBu69jNH6bxBC7m3FWkoycDKO2qlqxScOkT1gCMquuvK9cKEDUvZWAx_PWbTfHNe76LO0NOjdUVN3uj-KnjG409SIf6z3g52Qns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820820863</pqid></control><display><type>article</type><title>InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition</title><source>Publicly Available Content Database</source><creator>Zhi-Hao Lai ; Tian-Hao, Zhang ; Liu, Qi ; Qian, Xinyuan ; Li-Fang, Wei ; Song-Lu, Chen ; Chen, Feng ; Xu-Cheng, Yin</creator><creatorcontrib>Zhi-Hao Lai ; Tian-Hao, Zhang ; Liu, Qi ; Qian, Xinyuan ; Li-Fang, Wei ; Song-Lu, Chen ; Chen, Feng ; Xu-Cheng, Yin</creatorcontrib><description>The local and global features are both essential for automatic speech recognition (ASR). Many recent methods have verified that simply combining local and global features can further promote ASR performance. However, these methods pay less attention to the interaction of local and global features, and their series architectures are rigid to reflect local and global relationships. To address these issues, this paper proposes InterFormer for interactive local and global features fusion to learn a better representation for ASR. Specifically, we combine the convolution block with the transformer block in a parallel design. Besides, we propose a bidirectional feature interaction module (BFIM) and a selective fusion module (SFM) to implement the interaction and fusion of local and global features, respectively. Extensive experiments on public ASR datasets demonstrate the effectiveness of our proposed InterFormer and its superior performance over the other Transformer and Conformer models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic speech recognition ; Modules ; Transformers</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2820820863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhi-Hao Lai</creatorcontrib><creatorcontrib>Tian-Hao, Zhang</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Qian, Xinyuan</creatorcontrib><creatorcontrib>Li-Fang, Wei</creatorcontrib><creatorcontrib>Song-Lu, Chen</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Xu-Cheng, Yin</creatorcontrib><title>InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition</title><title>arXiv.org</title><description>The local and global features are both essential for automatic speech recognition (ASR). Many recent methods have verified that simply combining local and global features can further promote ASR performance. However, these methods pay less attention to the interaction of local and global features, and their series architectures are rigid to reflect local and global relationships. To address these issues, this paper proposes InterFormer for interactive local and global features fusion to learn a better representation for ASR. Specifically, we combine the convolution block with the transformer block in a parallel design. Besides, we propose a bidirectional feature interaction module (BFIM) and a selective fusion module (SFM) to implement the interaction and fusion of local and global features, respectively. Extensive experiments on public ASR datasets demonstrate the effectiveness of our proposed InterFormer and its superior performance over the other Transformer and Conformer models.</description><subject>Automatic speech recognition</subject><subject>Modules</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAUhYcgSMp3uNBasJk0aReRFbSqVm1kmq6l6Fybn54_ix4gOHDOx_kGLOBCzKJszvmIhdbWcRzzdMGTRATsstcOTU6mRbOEL0jlqhfCgZRsQOobbBu69jNH6bxBC7m3FWkoycDKO2qlqxScOkT1gCMquuvK9cKEDUvZWAx_PWbTfHNe76LO0NOjdUVN3uj-KnjG409SIf6z3g52Qns</recordid><startdate>20230529</startdate><enddate>20230529</enddate><creator>Zhi-Hao Lai</creator><creator>Tian-Hao, Zhang</creator><creator>Liu, Qi</creator><creator>Qian, Xinyuan</creator><creator>Li-Fang, Wei</creator><creator>Song-Lu, Chen</creator><creator>Chen, Feng</creator><creator>Xu-Cheng, Yin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230529</creationdate><title>InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition</title><author>Zhi-Hao Lai ; Tian-Hao, Zhang ; Liu, Qi ; Qian, Xinyuan ; Li-Fang, Wei ; Song-Lu, Chen ; Chen, Feng ; Xu-Cheng, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28208208633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic speech recognition</topic><topic>Modules</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhi-Hao Lai</creatorcontrib><creatorcontrib>Tian-Hao, Zhang</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Qian, Xinyuan</creatorcontrib><creatorcontrib>Li-Fang, Wei</creatorcontrib><creatorcontrib>Song-Lu, Chen</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Xu-Cheng, Yin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhi-Hao Lai</au><au>Tian-Hao, Zhang</au><au>Liu, Qi</au><au>Qian, Xinyuan</au><au>Li-Fang, Wei</au><au>Song-Lu, Chen</au><au>Chen, Feng</au><au>Xu-Cheng, Yin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition</atitle><jtitle>arXiv.org</jtitle><date>2023-05-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The local and global features are both essential for automatic speech recognition (ASR). Many recent methods have verified that simply combining local and global features can further promote ASR performance. However, these methods pay less attention to the interaction of local and global features, and their series architectures are rigid to reflect local and global relationships. To address these issues, this paper proposes InterFormer for interactive local and global features fusion to learn a better representation for ASR. Specifically, we combine the convolution block with the transformer block in a parallel design. Besides, we propose a bidirectional feature interaction module (BFIM) and a selective fusion module (SFM) to implement the interaction and fusion of local and global features, respectively. Extensive experiments on public ASR datasets demonstrate the effectiveness of our proposed InterFormer and its superior performance over the other Transformer and Conformer models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2820820863
source Publicly Available Content Database
subjects Automatic speech recognition
Modules
Transformers
title InterFormer: Interactive Local and Global Features Fusion for Automatic Speech Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=InterFormer:%20Interactive%20Local%20and%20Global%20Features%20Fusion%20for%20Automatic%20Speech%20Recognition&rft.jtitle=arXiv.org&rft.au=Zhi-Hao%20Lai&rft.date=2023-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2820820863%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28208208633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2820820863&rft_id=info:pmid/&rfr_iscdi=true