Loading…
Semantic Role Labeling Guided Out-of-distribution Detection
Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD pattern...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zou, Jinan Guo, Maihao Tian, Yu Lin, Yuhao Cao, Haiyao Liu, Lingqiao Abbasnejad, Ehsan Shi, Javen Qinfeng |
description | Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2820821578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820821578</sourcerecordid><originalsourceid>FETCH-proquest_journals_28208215783</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOpC_GBlz6XQiCdl_S9lVSYqJNcn8VPICrGZiZkAyEKJhaAcxIHsLAOYd1CVKKjGxu-NAumpZevUV61g1a4-70mEyHHb2kyHzPOhPiaJoUjXd0hxHbry3ItNc2YP7jnCwP-2p7Ys_RvxKGWA8-je6TalDAFRSyVOK_6w3iZzcS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820821578</pqid></control><display><type>article</type><title>Semantic Role Labeling Guided Out-of-distribution Detection</title><source>Access via ProQuest (Open Access)</source><creator>Zou, Jinan ; Guo, Maihao ; Tian, Yu ; Lin, Yuhao ; Cao, Haiyao ; Liu, Lingqiao ; Abbasnejad, Ehsan ; Shi, Javen Qinfeng</creator><creatorcontrib>Zou, Jinan ; Guo, Maihao ; Tian, Yu ; Lin, Yuhao ; Cao, Haiyao ; Liu, Lingqiao ; Abbasnejad, Ehsan ; Shi, Javen Qinfeng</creatorcontrib><description>Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Labeling ; Natural language processing ; Representations ; Semantics</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2820821578?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zou, Jinan</creatorcontrib><creatorcontrib>Guo, Maihao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Lin, Yuhao</creatorcontrib><creatorcontrib>Cao, Haiyao</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><creatorcontrib>Abbasnejad, Ehsan</creatorcontrib><creatorcontrib>Shi, Javen Qinfeng</creatorcontrib><title>Semantic Role Labeling Guided Out-of-distribution Detection</title><title>arXiv.org</title><description>Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.</description><subject>Labeling</subject><subject>Natural language processing</subject><subject>Representations</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOpC_GBlz6XQiCdl_S9lVSYqJNcn8VPICrGZiZkAyEKJhaAcxIHsLAOYd1CVKKjGxu-NAumpZevUV61g1a4-70mEyHHb2kyHzPOhPiaJoUjXd0hxHbry3ItNc2YP7jnCwP-2p7Ys_RvxKGWA8-je6TalDAFRSyVOK_6w3iZzcS</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Zou, Jinan</creator><creator>Guo, Maihao</creator><creator>Tian, Yu</creator><creator>Lin, Yuhao</creator><creator>Cao, Haiyao</creator><creator>Liu, Lingqiao</creator><creator>Abbasnejad, Ehsan</creator><creator>Shi, Javen Qinfeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240318</creationdate><title>Semantic Role Labeling Guided Out-of-distribution Detection</title><author>Zou, Jinan ; Guo, Maihao ; Tian, Yu ; Lin, Yuhao ; Cao, Haiyao ; Liu, Lingqiao ; Abbasnejad, Ehsan ; Shi, Javen Qinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28208215783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Labeling</topic><topic>Natural language processing</topic><topic>Representations</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jinan</creatorcontrib><creatorcontrib>Guo, Maihao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Lin, Yuhao</creatorcontrib><creatorcontrib>Cao, Haiyao</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><creatorcontrib>Abbasnejad, Ehsan</creatorcontrib><creatorcontrib>Shi, Javen Qinfeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Jinan</au><au>Guo, Maihao</au><au>Tian, Yu</au><au>Lin, Yuhao</au><au>Cao, Haiyao</au><au>Liu, Lingqiao</au><au>Abbasnejad, Ehsan</au><au>Shi, Javen Qinfeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semantic Role Labeling Guided Out-of-distribution Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-03-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2820821578 |
source | Access via ProQuest (Open Access) |
subjects | Labeling Natural language processing Representations Semantics |
title | Semantic Role Labeling Guided Out-of-distribution Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semantic%20Role%20Labeling%20Guided%20Out-of-distribution%20Detection&rft.jtitle=arXiv.org&rft.au=Zou,%20Jinan&rft.date=2024-03-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2820821578%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28208215783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2820821578&rft_id=info:pmid/&rfr_iscdi=true |