Loading…

Semantic Role Labeling Guided Out-of-distribution Detection

Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD pattern...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Zou, Jinan, Guo, Maihao, Tian, Yu, Lin, Yuhao, Cao, Haiyao, Liu, Lingqiao, Abbasnejad, Ehsan, Shi, Javen Qinfeng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zou, Jinan
Guo, Maihao
Tian, Yu
Lin, Yuhao
Cao, Haiyao
Liu, Lingqiao
Abbasnejad, Ehsan
Shi, Javen Qinfeng
description Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2820821578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2820821578</sourcerecordid><originalsourceid>FETCH-proquest_journals_28208215783</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOpC_GBlz6XQiCdl_S9lVSYqJNcn8VPICrGZiZkAyEKJhaAcxIHsLAOYd1CVKKjGxu-NAumpZevUV61g1a4-70mEyHHb2kyHzPOhPiaJoUjXd0hxHbry3ItNc2YP7jnCwP-2p7Ys_RvxKGWA8-je6TalDAFRSyVOK_6w3iZzcS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2820821578</pqid></control><display><type>article</type><title>Semantic Role Labeling Guided Out-of-distribution Detection</title><source>Access via ProQuest (Open Access)</source><creator>Zou, Jinan ; Guo, Maihao ; Tian, Yu ; Lin, Yuhao ; Cao, Haiyao ; Liu, Lingqiao ; Abbasnejad, Ehsan ; Shi, Javen Qinfeng</creator><creatorcontrib>Zou, Jinan ; Guo, Maihao ; Tian, Yu ; Lin, Yuhao ; Cao, Haiyao ; Liu, Lingqiao ; Abbasnejad, Ehsan ; Shi, Javen Qinfeng</creatorcontrib><description>Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Labeling ; Natural language processing ; Representations ; Semantics</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2820821578?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zou, Jinan</creatorcontrib><creatorcontrib>Guo, Maihao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Lin, Yuhao</creatorcontrib><creatorcontrib>Cao, Haiyao</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><creatorcontrib>Abbasnejad, Ehsan</creatorcontrib><creatorcontrib>Shi, Javen Qinfeng</creatorcontrib><title>Semantic Role Labeling Guided Out-of-distribution Detection</title><title>arXiv.org</title><description>Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.</description><subject>Labeling</subject><subject>Natural language processing</subject><subject>Representations</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOpC_GBlz6XQiCdl_S9lVSYqJNcn8VPICrGZiZkAyEKJhaAcxIHsLAOYd1CVKKjGxu-NAumpZevUV61g1a4-70mEyHHb2kyHzPOhPiaJoUjXd0hxHbry3ItNc2YP7jnCwP-2p7Ys_RvxKGWA8-je6TalDAFRSyVOK_6w3iZzcS</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Zou, Jinan</creator><creator>Guo, Maihao</creator><creator>Tian, Yu</creator><creator>Lin, Yuhao</creator><creator>Cao, Haiyao</creator><creator>Liu, Lingqiao</creator><creator>Abbasnejad, Ehsan</creator><creator>Shi, Javen Qinfeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240318</creationdate><title>Semantic Role Labeling Guided Out-of-distribution Detection</title><author>Zou, Jinan ; Guo, Maihao ; Tian, Yu ; Lin, Yuhao ; Cao, Haiyao ; Liu, Lingqiao ; Abbasnejad, Ehsan ; Shi, Javen Qinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28208215783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Labeling</topic><topic>Natural language processing</topic><topic>Representations</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zou, Jinan</creatorcontrib><creatorcontrib>Guo, Maihao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Lin, Yuhao</creatorcontrib><creatorcontrib>Cao, Haiyao</creatorcontrib><creatorcontrib>Liu, Lingqiao</creatorcontrib><creatorcontrib>Abbasnejad, Ehsan</creatorcontrib><creatorcontrib>Shi, Javen Qinfeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Jinan</au><au>Guo, Maihao</au><au>Tian, Yu</au><au>Lin, Yuhao</au><au>Cao, Haiyao</au><au>Liu, Lingqiao</au><au>Abbasnejad, Ehsan</au><au>Shi, Javen Qinfeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semantic Role Labeling Guided Out-of-distribution Detection</atitle><jtitle>arXiv.org</jtitle><date>2024-03-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Identifying unexpected domain-shifted instances in natural language processing is crucial in real-world applications. Previous works identify the out-of-distribution (OOD) instance by leveraging a single global feature embedding to represent the sentence, which cannot characterize subtle OOD patterns well. Another major challenge current OOD methods face is learning effective low-dimensional sentence representations to identify the hard OOD instances that are semantically similar to the in-distribution (ID) data. In this paper, we propose a new unsupervised OOD detection method, namely Semantic Role Labeling Guided Out-of-distribution Detection (SRLOOD), that separates, extracts, and learns the semantic role labeling (SRL) guided fine-grained local feature representations from different arguments of a sentence and the global feature representations of the full sentence using a margin-based contrastive loss. A novel self-supervised approach is also introduced to enhance such global-local feature learning by predicting the SRL extracted role. The resulting model achieves SOTA performance on four OOD benchmarks, indicating the effectiveness of our approach. The code is publicly accessible via \url{https://github.com/cytai/SRLOOD}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2820821578
source Access via ProQuest (Open Access)
subjects Labeling
Natural language processing
Representations
Semantics
title Semantic Role Labeling Guided Out-of-distribution Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semantic%20Role%20Labeling%20Guided%20Out-of-distribution%20Detection&rft.jtitle=arXiv.org&rft.au=Zou,%20Jinan&rft.date=2024-03-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2820821578%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28208215783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2820821578&rft_id=info:pmid/&rfr_iscdi=true