Loading…
The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point
In this paper, we investigate the singularity near the degenerate points of the steady axisymmetric flow with general vorticity of an inviscid incompressible fluid acted on by gravity and with a free surface. We called the points on the free boundary at which the gradient of the stream function vani...
Saved in:
Published in: | Communications in mathematical physics 2023-06, Vol.400 (3), p.2137-2179 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-af4fe36bf00b181b35f2d0bbe415080edf31c9d693e44fb538a9c83a1ec95293 |
container_end_page | 2179 |
container_issue | 3 |
container_start_page | 2137 |
container_title | Communications in mathematical physics |
container_volume | 400 |
creator | Du, Lili Huang, Jinli Pu, Yang |
description | In this paper, we investigate the singularity near the degenerate points of the steady axisymmetric flow with general vorticity of an inviscid incompressible fluid acted on by gravity and with a free surface. We called the points on the free boundary at which the gradient of the stream function vanishes as the degenerate points. The main results in this paper give the different classifications of the singularity near the degenerate points on the free surface. More precisely, we obtained that at the stagnation points, the possible profiles must be a Stokes corner, a horizontal cusp, or a horizontal flatness. At the degenerate points on the symmetric axis except the origin, the wave profile must be a cusp. At the origin, the possible wave profiles must be a Garabedian pointed bubble, a horizontal cusp, or a horizontal flatness. |
doi_str_mv | 10.1007/s00220-023-04651-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821007583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821007583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-af4fe36bf00b181b35f2d0bbe415080edf31c9d693e44fb538a9c83a1ec95293</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmU93tVotFBUsbkNm5qVNaWdqklrn3zt1BHeu3ubce3mHkEsO1xwgvfEAQgADIRlEScxZekQGPJKCQc6TYzIA4MBkwpNTcub9CgBykSQDUsyXSCcOkd41u7rSrqWNoW8BddXS0Zf17WaDwdmSTutP60tb0cm62dO9DUv63rhgSxtaOr2lz6gdDV3bPS6wRqcD0tfG1uGcnBi99njxe4dkPnmYj5_Y7OVxOh7NWClSCEybyKBMCgNQ8IwXMjaigqLAiMeQAVZG8jKvklxiFJkilpnOy0xqjmUei1wOyVVfu3XNxw59UKtm5-puUYlMHCzFmewo0VOla7x3aNTW2U33tuKgDpDqVapOpfpRqdIuJPuQ7-B6ge6v-p_UNy_5dmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821007583</pqid></control><display><type>article</type><title>The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point</title><source>Springer Nature</source><creator>Du, Lili ; Huang, Jinli ; Pu, Yang</creator><creatorcontrib>Du, Lili ; Huang, Jinli ; Pu, Yang</creatorcontrib><description>In this paper, we investigate the singularity near the degenerate points of the steady axisymmetric flow with general vorticity of an inviscid incompressible fluid acted on by gravity and with a free surface. We called the points on the free boundary at which the gradient of the stream function vanishes as the degenerate points. The main results in this paper give the different classifications of the singularity near the degenerate points on the free surface. More precisely, we obtained that at the stagnation points, the possible profiles must be a Stokes corner, a horizontal cusp, or a horizontal flatness. At the degenerate points on the symmetric axis except the origin, the wave profile must be a cusp. At the origin, the possible wave profiles must be a Garabedian pointed bubble, a horizontal cusp, or a horizontal flatness.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-023-04651-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axisymmetric flow ; Classical and Quantum Gravitation ; Complex Systems ; Cusps ; Flatness ; Fluid flow ; Free boundaries ; Free surfaces ; Incompressible flow ; Incompressible fluids ; Inviscid flow ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Singularities ; Stream functions (fluids) ; Theoretical ; Vorticity</subject><ispartof>Communications in mathematical physics, 2023-06, Vol.400 (3), p.2137-2179</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-af4fe36bf00b181b35f2d0bbe415080edf31c9d693e44fb538a9c83a1ec95293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Du, Lili</creatorcontrib><creatorcontrib>Huang, Jinli</creatorcontrib><creatorcontrib>Pu, Yang</creatorcontrib><title>The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this paper, we investigate the singularity near the degenerate points of the steady axisymmetric flow with general vorticity of an inviscid incompressible fluid acted on by gravity and with a free surface. We called the points on the free boundary at which the gradient of the stream function vanishes as the degenerate points. The main results in this paper give the different classifications of the singularity near the degenerate points on the free surface. More precisely, we obtained that at the stagnation points, the possible profiles must be a Stokes corner, a horizontal cusp, or a horizontal flatness. At the degenerate points on the symmetric axis except the origin, the wave profile must be a cusp. At the origin, the possible wave profiles must be a Garabedian pointed bubble, a horizontal cusp, or a horizontal flatness.</description><subject>Axisymmetric flow</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Cusps</subject><subject>Flatness</subject><subject>Fluid flow</subject><subject>Free boundaries</subject><subject>Free surfaces</subject><subject>Incompressible flow</subject><subject>Incompressible fluids</subject><subject>Inviscid flow</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Singularities</subject><subject>Stream functions (fluids)</subject><subject>Theoretical</subject><subject>Vorticity</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmU93tVotFBUsbkNm5qVNaWdqklrn3zt1BHeu3ubce3mHkEsO1xwgvfEAQgADIRlEScxZekQGPJKCQc6TYzIA4MBkwpNTcub9CgBykSQDUsyXSCcOkd41u7rSrqWNoW8BddXS0Zf17WaDwdmSTutP60tb0cm62dO9DUv63rhgSxtaOr2lz6gdDV3bPS6wRqcD0tfG1uGcnBi99njxe4dkPnmYj5_Y7OVxOh7NWClSCEybyKBMCgNQ8IwXMjaigqLAiMeQAVZG8jKvklxiFJkilpnOy0xqjmUei1wOyVVfu3XNxw59UKtm5-puUYlMHCzFmewo0VOla7x3aNTW2U33tuKgDpDqVapOpfpRqdIuJPuQ7-B6ge6v-p_UNy_5dmo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Du, Lili</creator><creator>Huang, Jinli</creator><creator>Pu, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point</title><author>Du, Lili ; Huang, Jinli ; Pu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-af4fe36bf00b181b35f2d0bbe415080edf31c9d693e44fb538a9c83a1ec95293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axisymmetric flow</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Cusps</topic><topic>Flatness</topic><topic>Fluid flow</topic><topic>Free boundaries</topic><topic>Free surfaces</topic><topic>Incompressible flow</topic><topic>Incompressible fluids</topic><topic>Inviscid flow</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Singularities</topic><topic>Stream functions (fluids)</topic><topic>Theoretical</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Lili</creatorcontrib><creatorcontrib>Huang, Jinli</creatorcontrib><creatorcontrib>Pu, Yang</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Lili</au><au>Huang, Jinli</au><au>Pu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>400</volume><issue>3</issue><spage>2137</spage><epage>2179</epage><pages>2137-2179</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this paper, we investigate the singularity near the degenerate points of the steady axisymmetric flow with general vorticity of an inviscid incompressible fluid acted on by gravity and with a free surface. We called the points on the free boundary at which the gradient of the stream function vanishes as the degenerate points. The main results in this paper give the different classifications of the singularity near the degenerate points on the free surface. More precisely, we obtained that at the stagnation points, the possible profiles must be a Stokes corner, a horizontal cusp, or a horizontal flatness. At the degenerate points on the symmetric axis except the origin, the wave profile must be a cusp. At the origin, the possible wave profiles must be a Garabedian pointed bubble, a horizontal cusp, or a horizontal flatness.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-023-04651-7</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2023-06, Vol.400 (3), p.2137-2179 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2821007583 |
source | Springer Nature |
subjects | Axisymmetric flow Classical and Quantum Gravitation Complex Systems Cusps Flatness Fluid flow Free boundaries Free surfaces Incompressible flow Incompressible fluids Inviscid flow Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Singularities Stream functions (fluids) Theoretical Vorticity |
title | The Free Boundary of Steady Axisymmetric Inviscid Flow with Vorticity I: Near the Degenerate Point |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Free%20Boundary%20of%20Steady%20Axisymmetric%20Inviscid%20Flow%20with%20Vorticity%20I:%20Near%20the%20Degenerate%20Point&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Du,%20Lili&rft.date=2023-06-01&rft.volume=400&rft.issue=3&rft.spage=2137&rft.epage=2179&rft.pages=2137-2179&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-023-04651-7&rft_dat=%3Cproquest_cross%3E2821007583%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-af4fe36bf00b181b35f2d0bbe415080edf31c9d693e44fb538a9c83a1ec95293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821007583&rft_id=info:pmid/&rfr_iscdi=true |