Loading…
An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts
With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for in...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Garg, Muskan Shahbandegan, Amirmohammad Chadha, Amrit Mago, Vijay |
description | With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2821120200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821120200</sourcerecordid><originalsourceid>FETCH-proquest_journals_28211202003</originalsourceid><addsrcrecordid>eNqNjcuKwkAQAAdhQdn1Hxo8C5OOr6v4wD0Iy653aWMHRkN3nO6An28OfsCeCoqCGoQRlmUxXc0Qh2Fsdosx4mKJ83k5Cve1wFpEnZyvsCUnY4daM-yebUNJ6NIwfItzbjmbCjXwm-wOe6pcs4HWcGTxXm-TeZcvJBVDEvjTKvX2yNdE8KPm9hU-amqMx29-hsl-d9ocpm3WR8fm55t2uT_YGVdYFBgxxvJ_1QvyLUg5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821120200</pqid></control><display><type>article</type><title>An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts</title><source>Publicly Available Content (ProQuest)</source><creator>Garg, Muskan ; Shahbandegan, Amirmohammad ; Chadha, Amrit ; Mago, Vijay</creator><creatorcontrib>Garg, Muskan ; Shahbandegan, Amirmohammad ; Chadha, Amrit ; Mago, Vijay</creatorcontrib><description>With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Customization ; Datasets ; Digital media ; Natural language processing ; Social networks</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2821120200?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Garg, Muskan</creatorcontrib><creatorcontrib>Shahbandegan, Amirmohammad</creatorcontrib><creatorcontrib>Chadha, Amrit</creatorcontrib><creatorcontrib>Mago, Vijay</creatorcontrib><title>An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts</title><title>arXiv.org</title><description>With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.</description><subject>Customization</subject><subject>Datasets</subject><subject>Digital media</subject><subject>Natural language processing</subject><subject>Social networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcuKwkAQAAdhQdn1Hxo8C5OOr6v4wD0Iy653aWMHRkN3nO6An28OfsCeCoqCGoQRlmUxXc0Qh2Fsdosx4mKJ83k5Cve1wFpEnZyvsCUnY4daM-yebUNJ6NIwfItzbjmbCjXwm-wOe6pcs4HWcGTxXm-TeZcvJBVDEvjTKvX2yNdE8KPm9hU-amqMx29-hsl-d9ocpm3WR8fm55t2uT_YGVdYFBgxxvJ_1QvyLUg5</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Garg, Muskan</creator><creator>Shahbandegan, Amirmohammad</creator><creator>Chadha, Amrit</creator><creator>Mago, Vijay</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230530</creationdate><title>An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts</title><author>Garg, Muskan ; Shahbandegan, Amirmohammad ; Chadha, Amrit ; Mago, Vijay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28211202003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Customization</topic><topic>Datasets</topic><topic>Digital media</topic><topic>Natural language processing</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Garg, Muskan</creatorcontrib><creatorcontrib>Shahbandegan, Amirmohammad</creatorcontrib><creatorcontrib>Chadha, Amrit</creatorcontrib><creatorcontrib>Mago, Vijay</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Muskan</au><au>Shahbandegan, Amirmohammad</au><au>Chadha, Amrit</au><au>Mago, Vijay</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts</atitle><jtitle>arXiv.org</jtitle><date>2023-05-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2821120200 |
source | Publicly Available Content (ProQuest) |
subjects | Customization Datasets Digital media Natural language processing Social networks |
title | An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Annotated%20Dataset%20for%20Explainable%20Interpersonal%20Risk%20Factors%20of%20Mental%20Disturbance%20in%20Social%20Media%20Posts&rft.jtitle=arXiv.org&rft.au=Garg,%20Muskan&rft.date=2023-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2821120200%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28211202003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821120200&rft_id=info:pmid/&rfr_iscdi=true |