Loading…
Test Case Generation for Drivability Requirements of an Automotive Cruise Controller: An Experience with an Industrial Simulator
Automotive software development requires engineers to test their systems to detect violations of both functional and drivability requirements. Functional requirements define the functionality of the automotive software. Drivability requirements refer to the driver's perception of the interactio...
Saved in:
Published in: | arXiv.org 2023-05 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Automotive software development requires engineers to test their systems to detect violations of both functional and drivability requirements. Functional requirements define the functionality of the automotive software. Drivability requirements refer to the driver's perception of the interactions with the vehicle; for example, they typically require limiting the acceleration and jerk perceived by the driver within given thresholds. While functional requirements are extensively considered by the research literature, drivability requirements garner less attention. This industrial paper describes our experience assessing the usefulness of an automated search-based software testing (SBST) framework in generating failure-revealing test cases for functional and drivability requirements. Our experience concerns the VI-CarRealTime simulator, an industrial virtual modeling and simulation environment widely used in the automotive domain. We designed a Cruise Control system in Simulink for a four-wheel vehicle, in an iterative fashion, by producing 21 model versions. We used the SBST framework for each version of the model to search for failure-revealing test cases revealing requirement violations. Our results show that the SBST framework successfully identified a failure-revealing test case for 66.7% of our model versions, requiring, on average, 245.9s and 3.8 iterations. We present lessons learned, reflect on the generality of our results, and discuss how our results improve the state of practice. |
---|---|
ISSN: | 2331-8422 |