Loading…

Dielectric polarizability of SiO2 in niobiosilicate glasses

Understanding the mechanisms contributing to dielectric properties of glasses is critical for designing new compositions for microwave frequency applications. In this work, dielectric permittivity was measured using a cavity perturbation technique at 10 GHz for a series of niobiosilicate glasses wit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2023-08, Vol.106 (8), p.4546-4553
Main Authors: Gerace, Katy S., Lanagan, Michael T., Mauro, John C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4553
container_issue 8
container_start_page 4546
container_title Journal of the American Ceramic Society
container_volume 106
creator Gerace, Katy S.
Lanagan, Michael T.
Mauro, John C.
description Understanding the mechanisms contributing to dielectric properties of glasses is critical for designing new compositions for microwave frequency applications. In this work, dielectric permittivity was measured using a cavity perturbation technique at 10 GHz for a series of niobiosilicate glasses with the compositions (100‐2x)SiO2‐ xNb2O5‐ xLi2O where x = 32.5, 30, 25, and 15 mol%. Permittivity measurements and glass compositions were used to calculate the polarizability of each cation‐anion unit in the glass network using the Clausius‐Mossotti equation. The SiO2 polarizability in niobiosilicates was calculated to be 6.16 Å3, which is much higher than the SiO2 polarizability in fused silica glass (5.25 Å3), alkali modified silicates (5.37 Å3), and aluminosilicates (5.89 Å3). The increasing trend in SiO2 polarizability is attributed to the disruption in the connectivity of the SiO4 tetrahedral network as it accommodates different network formers. The high SiO2 polarizability of 6.16 Å3 accurately predicts measured dielectric permittivity when Nb2O5 = 25, 30, and 32.5 mol%, but overpredicts measured permittivity when Nb2O5 ≤ 15 mol%, which is attributed to a decrease in SiO2 polarizability as the percentage of corner sharing SiO4 tetrahedra with NbO6 octahedra goes down. This work demonstrates that SiO2 polarizability depends on chemistry and connectivity of the glass, which has important implications in designing glass compositions for microwave frequency applications.
doi_str_mv 10.1111/jace.19151
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2821246304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821246304</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2611-5839c7720a6fff8ee3e7f7a5c733f9dbf7a4c3cc74723650445193b10e4383db3</originalsourceid><addsrcrecordid>eNotkEtPwzAQhC0EEqFw4RdY4pzi9SOOxakqLQ9V6gE4W45rI0cmCXEqFH49acteZnY12pE-hG6BzGGa-9pYNwcFAs5QBkJAThUU5ygjhNBclpRcoquU6mkFVfIMPTwGF50d-mBx10bTh19ThRiGEbcev4UtxaHBTWir0Kbpbs3g8Gc0Kbl0jS68icnd_OsMfaxX78vnfLN9elkuNnlHC4BclExZKSkxhfe-dI456aURVjLm1a6aPLfMWsklZYUgnAtQrALiOCvZrmIzdHf62_Xt996lQdftvm-mSk1LCpQXjPApBafUT4hu1F0fvkw_aiD6QEYfyOgjGf26WK6Ojv0B0vVXkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821246304</pqid></control><display><type>article</type><title>Dielectric polarizability of SiO2 in niobiosilicate glasses</title><source>Wiley</source><creator>Gerace, Katy S. ; Lanagan, Michael T. ; Mauro, John C.</creator><creatorcontrib>Gerace, Katy S. ; Lanagan, Michael T. ; Mauro, John C.</creatorcontrib><description>Understanding the mechanisms contributing to dielectric properties of glasses is critical for designing new compositions for microwave frequency applications. In this work, dielectric permittivity was measured using a cavity perturbation technique at 10 GHz for a series of niobiosilicate glasses with the compositions (100‐2x)SiO2‐ xNb2O5‐ xLi2O where x = 32.5, 30, 25, and 15 mol%. Permittivity measurements and glass compositions were used to calculate the polarizability of each cation‐anion unit in the glass network using the Clausius‐Mossotti equation. The SiO2 polarizability in niobiosilicates was calculated to be 6.16 Å3, which is much higher than the SiO2 polarizability in fused silica glass (5.25 Å3), alkali modified silicates (5.37 Å3), and aluminosilicates (5.89 Å3). The increasing trend in SiO2 polarizability is attributed to the disruption in the connectivity of the SiO4 tetrahedral network as it accommodates different network formers. The high SiO2 polarizability of 6.16 Å3 accurately predicts measured dielectric permittivity when Nb2O5 = 25, 30, and 32.5 mol%, but overpredicts measured permittivity when Nb2O5 ≤ 15 mol%, which is attributed to a decrease in SiO2 polarizability as the percentage of corner sharing SiO4 tetrahedra with NbO6 octahedra goes down. This work demonstrates that SiO2 polarizability depends on chemistry and connectivity of the glass, which has important implications in designing glass compositions for microwave frequency applications.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.19151</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum silicates ; Composition ; dielectric materials/properties ; Dielectric properties ; Fused silica ; Mathematical analysis ; Microwave frequencies ; Niobium oxides ; niobium/niobium compounds ; Permittivity ; Perturbation methods ; Silica glass ; Silicates ; Silicon dioxide ; Tetrahedra</subject><ispartof>Journal of the American Ceramic Society, 2023-08, Vol.106 (8), p.4546-4553</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of American Ceramic Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3053-0948 ; 0000-0002-4319-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gerace, Katy S.</creatorcontrib><creatorcontrib>Lanagan, Michael T.</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><title>Dielectric polarizability of SiO2 in niobiosilicate glasses</title><title>Journal of the American Ceramic Society</title><description>Understanding the mechanisms contributing to dielectric properties of glasses is critical for designing new compositions for microwave frequency applications. In this work, dielectric permittivity was measured using a cavity perturbation technique at 10 GHz for a series of niobiosilicate glasses with the compositions (100‐2x)SiO2‐ xNb2O5‐ xLi2O where x = 32.5, 30, 25, and 15 mol%. Permittivity measurements and glass compositions were used to calculate the polarizability of each cation‐anion unit in the glass network using the Clausius‐Mossotti equation. The SiO2 polarizability in niobiosilicates was calculated to be 6.16 Å3, which is much higher than the SiO2 polarizability in fused silica glass (5.25 Å3), alkali modified silicates (5.37 Å3), and aluminosilicates (5.89 Å3). The increasing trend in SiO2 polarizability is attributed to the disruption in the connectivity of the SiO4 tetrahedral network as it accommodates different network formers. The high SiO2 polarizability of 6.16 Å3 accurately predicts measured dielectric permittivity when Nb2O5 = 25, 30, and 32.5 mol%, but overpredicts measured permittivity when Nb2O5 ≤ 15 mol%, which is attributed to a decrease in SiO2 polarizability as the percentage of corner sharing SiO4 tetrahedra with NbO6 octahedra goes down. This work demonstrates that SiO2 polarizability depends on chemistry and connectivity of the glass, which has important implications in designing glass compositions for microwave frequency applications.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Composition</subject><subject>dielectric materials/properties</subject><subject>Dielectric properties</subject><subject>Fused silica</subject><subject>Mathematical analysis</subject><subject>Microwave frequencies</subject><subject>Niobium oxides</subject><subject>niobium/niobium compounds</subject><subject>Permittivity</subject><subject>Perturbation methods</subject><subject>Silica glass</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><subject>Tetrahedra</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotkEtPwzAQhC0EEqFw4RdY4pzi9SOOxakqLQ9V6gE4W45rI0cmCXEqFH49acteZnY12pE-hG6BzGGa-9pYNwcFAs5QBkJAThUU5ygjhNBclpRcoquU6mkFVfIMPTwGF50d-mBx10bTh19ThRiGEbcev4UtxaHBTWir0Kbpbs3g8Gc0Kbl0jS68icnd_OsMfaxX78vnfLN9elkuNnlHC4BclExZKSkxhfe-dI456aURVjLm1a6aPLfMWsklZYUgnAtQrALiOCvZrmIzdHf62_Xt996lQdftvm-mSk1LCpQXjPApBafUT4hu1F0fvkw_aiD6QEYfyOgjGf26WK6Ojv0B0vVXkg</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Gerace, Katy S.</creator><creator>Lanagan, Michael T.</creator><creator>Mauro, John C.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3053-0948</orcidid><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid></search><sort><creationdate>202308</creationdate><title>Dielectric polarizability of SiO2 in niobiosilicate glasses</title><author>Gerace, Katy S. ; Lanagan, Michael T. ; Mauro, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2611-5839c7720a6fff8ee3e7f7a5c733f9dbf7a4c3cc74723650445193b10e4383db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Composition</topic><topic>dielectric materials/properties</topic><topic>Dielectric properties</topic><topic>Fused silica</topic><topic>Mathematical analysis</topic><topic>Microwave frequencies</topic><topic>Niobium oxides</topic><topic>niobium/niobium compounds</topic><topic>Permittivity</topic><topic>Perturbation methods</topic><topic>Silica glass</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerace, Katy S.</creatorcontrib><creatorcontrib>Lanagan, Michael T.</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerace, Katy S.</au><au>Lanagan, Michael T.</au><au>Mauro, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric polarizability of SiO2 in niobiosilicate glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2023-08</date><risdate>2023</risdate><volume>106</volume><issue>8</issue><spage>4546</spage><epage>4553</epage><pages>4546-4553</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Understanding the mechanisms contributing to dielectric properties of glasses is critical for designing new compositions for microwave frequency applications. In this work, dielectric permittivity was measured using a cavity perturbation technique at 10 GHz for a series of niobiosilicate glasses with the compositions (100‐2x)SiO2‐ xNb2O5‐ xLi2O where x = 32.5, 30, 25, and 15 mol%. Permittivity measurements and glass compositions were used to calculate the polarizability of each cation‐anion unit in the glass network using the Clausius‐Mossotti equation. The SiO2 polarizability in niobiosilicates was calculated to be 6.16 Å3, which is much higher than the SiO2 polarizability in fused silica glass (5.25 Å3), alkali modified silicates (5.37 Å3), and aluminosilicates (5.89 Å3). The increasing trend in SiO2 polarizability is attributed to the disruption in the connectivity of the SiO4 tetrahedral network as it accommodates different network formers. The high SiO2 polarizability of 6.16 Å3 accurately predicts measured dielectric permittivity when Nb2O5 = 25, 30, and 32.5 mol%, but overpredicts measured permittivity when Nb2O5 ≤ 15 mol%, which is attributed to a decrease in SiO2 polarizability as the percentage of corner sharing SiO4 tetrahedra with NbO6 octahedra goes down. This work demonstrates that SiO2 polarizability depends on chemistry and connectivity of the glass, which has important implications in designing glass compositions for microwave frequency applications.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.19151</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3053-0948</orcidid><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2023-08, Vol.106 (8), p.4546-4553
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2821246304
source Wiley
subjects Aluminosilicates
Aluminum silicates
Composition
dielectric materials/properties
Dielectric properties
Fused silica
Mathematical analysis
Microwave frequencies
Niobium oxides
niobium/niobium compounds
Permittivity
Perturbation methods
Silica glass
Silicates
Silicon dioxide
Tetrahedra
title Dielectric polarizability of SiO2 in niobiosilicate glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20polarizability%20of%20SiO2%20in%20niobiosilicate%20glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Gerace,%20Katy%20S.&rft.date=2023-08&rft.volume=106&rft.issue=8&rft.spage=4546&rft.epage=4553&rft.pages=4546-4553&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.19151&rft_dat=%3Cproquest_wiley%3E2821246304%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2611-5839c7720a6fff8ee3e7f7a5c733f9dbf7a4c3cc74723650445193b10e4383db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821246304&rft_id=info:pmid/&rfr_iscdi=true