Loading…
Slow sintering in garnet‐containing Y and Gd zirconate–aluminate mixtures for thermal barrier coatings
Mixtures of rare‐earth zirconates and aluminates containing Y or Y + Gd that form a two‐phase garnet–fluorite mixture exhibit much slower sintering than pure fluorite at 1400°C. An equivalent Y‐free, Gd‐containing composition that forms a perovskite aluminate instead of garnet showed faster densific...
Saved in:
Published in: | Journal of the American Ceramic Society 2023-08, Vol.106 (8), p.4519-4525 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mixtures of rare‐earth zirconates and aluminates containing Y or Y + Gd that form a two‐phase garnet–fluorite mixture exhibit much slower sintering than pure fluorite at 1400°C. An equivalent Y‐free, Gd‐containing composition that forms a perovskite aluminate instead of garnet showed faster densification after the metastable garnet decomposes. At 1500°C, the Y‐free sample also showed the fastest initial sintering rate, whereas there was more divergence in the sintering rate for the samples containing Y + Gd. The zirconate–aluminate with equimolar Y + Gd shows the slowest densification at 1500°C and retains ∼25% porosity after 250 h. The results highlight possibilities for designing compliant thermal barrier coatings that can retain significant porosity at 1400°C or higher. |
---|---|
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/jace.19121 |