Loading…

A Study on Crystalline Structure and Li+-Ion Diffusion Coefficient of LiNixFe1−xPO4/C Cathode Material

This work focused on synthesising Ni-doped LiNi x Fe 1− x PO 4 /C ( x  = 0, 0.05 and 0.1) cathode materials by hydrothermal method. The crystalline structure and morphology of the synthesised materials were investigated through x-ray diffraction, Raman scattering spectroscopy, thermal gravimetric an...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) 2023-06, Vol.48 (6), p.7713-7720
Main Authors: Trinh, Dung V., Nguyen, Mai T. T., Huynh, Nguyen T. L., Tran, Hoang V., Huynh, Chinh D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work focused on synthesising Ni-doped LiNi x Fe 1− x PO 4 /C ( x  = 0, 0.05 and 0.1) cathode materials by hydrothermal method. The crystalline structure and morphology of the synthesised materials were investigated through x-ray diffraction, Raman scattering spectroscopy, thermal gravimetric analysis, and scanning electron microscopy. Their electrochemical performance was analysed by cyclic voltammetry and galvanostatic cycling test. The highest initial capacity of 170.3 mAh/g was achieved for LiNi 0.1 Fe 0.9 PO 4 /C. It also maintained 99.68% of its initial capacity for 120 cycles, with a Li + -ion diffusion coefficient of 1.12 × 10 −12  cm 2 /s compared with that (9.21 × 10 −13  cm 2 /s) of LiNi 0.05 Fe 0.95 PO 4 /C.
ISSN:2193-567X
1319-8025
2191-4281
DOI:10.1007/s13369-023-07799-5