Loading…

Analytical design models for geotechnical seismic isolation systems

Geotechnical Seismic Isolation (GSI) can be defined as a new category of seismic isolation techniques that involve the dynamic interaction between the structural system and geo-materials. Whilst the mechanism of various GSI systems and their performance have already been demonstrated through differe...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of earthquake engineering 2023-06, Vol.21 (8), p.3881-3904
Main Author: Tsang, Hing-Ho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Geotechnical Seismic Isolation (GSI) can be defined as a new category of seismic isolation techniques that involve the dynamic interaction between the structural system and geo-materials. Whilst the mechanism of various GSI systems and their performance have already been demonstrated through different research methods, there is a missing link between fundamental research and engineering practice. This paper aims to initiate the development in this direction. A new suite of equivalent-linear foundation stiffness and damping models under the same framework is proposed for four GSI configurations, one of which is a novel combination of two existing ones. The exact solutions for the equivalent dynamic properties of flexible-base systems have also been derived that explicitly include the foundation inertia and the strain-dependent equivalent damping of foundation materials, which are both significant for GSI systems. The application of the proposed analytical design models has been illustrated through response history analyses and a detailed hand-calculation design procedure has also been outlined and demonstrated.
ISSN:1570-761X
1573-1456
DOI:10.1007/s10518-022-01469-x