Loading…

KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization

Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requireme...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-05
Main Authors: Mei, Jonathan, Moreno, Alexander, Walters, Luke
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mei, Jonathan
Moreno, Alexander
Walters, Luke
description Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requirements: it is used for large deep models [Anil et al., 2020] and in production [Anil et al., 2022]. However, it takes inverse matrix roots of ill-conditioned matrices. This requires 64-bit precision, imposing strong hardware constraints. In this paper, we propose a novel factorization, Kronecker Approximation-Domination (KrAD). Using KrAD, we update a matrix that directly approximates the inverse empirical Fisher matrix (like full matrix AdaGrad), avoiding inversion and hence 64-bit precision. We then propose KrADagrad\(^\star\), with similar computational costs to Shampoo and the same regret. Synthetic ill-conditioned experiments show improved performance over Shampoo for 32-bit precision, while for several real datasets we have comparable or better generalization.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2821493350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821493350</sourcerecordid><originalsourceid>FETCH-proquest_journals_28214933503</originalsourceid><addsrcrecordid>eNqNjN8KgjAchUcQJOU7DLoW5qZl3Un2B7woqNuQMVf9LDfbJkRPn0kP0NU5nO_jDJBHGQuDJKJ0hHxrK0IInc1pHDMPnXOTZvxqeLnEudFKirs0OG0ao19QcwdaBZmuQfUVbzsRpHL4YKTQqoTvKkt8dFrcuHUg8L5xUMO79ydoeOEPK_1fjtF0sz6tdkF3_2yldUWlW6M6VNCEhtGCsZiw_6wPcNBEtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821493350</pqid></control><display><type>article</type><title>KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization</title><source>Publicly Available Content Database</source><creator>Mei, Jonathan ; Moreno, Alexander ; Walters, Luke</creator><creatorcontrib>Mei, Jonathan ; Moreno, Alexander ; Walters, Luke</creatorcontrib><description>Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requirements: it is used for large deep models [Anil et al., 2020] and in production [Anil et al., 2022]. However, it takes inverse matrix roots of ill-conditioned matrices. This requires 64-bit precision, imposing strong hardware constraints. In this paper, we propose a novel factorization, Kronecker Approximation-Domination (KrAD). Using KrAD, we update a matrix that directly approximates the inverse empirical Fisher matrix (like full matrix AdaGrad), avoiding inversion and hence 64-bit precision. We then propose KrADagrad\(^\star\), with similar computational costs to Shampoo and the same regret. Synthetic ill-conditioned experiments show improved performance over Shampoo for 32-bit precision, while for several real datasets we have comparable or better generalization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Optimization ; Shampoos</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2821493350?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Mei, Jonathan</creatorcontrib><creatorcontrib>Moreno, Alexander</creatorcontrib><creatorcontrib>Walters, Luke</creatorcontrib><title>KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization</title><title>arXiv.org</title><description>Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requirements: it is used for large deep models [Anil et al., 2020] and in production [Anil et al., 2022]. However, it takes inverse matrix roots of ill-conditioned matrices. This requires 64-bit precision, imposing strong hardware constraints. In this paper, we propose a novel factorization, Kronecker Approximation-Domination (KrAD). Using KrAD, we update a matrix that directly approximates the inverse empirical Fisher matrix (like full matrix AdaGrad), avoiding inversion and hence 64-bit precision. We then propose KrADagrad\(^\star\), with similar computational costs to Shampoo and the same regret. Synthetic ill-conditioned experiments show improved performance over Shampoo for 32-bit precision, while for several real datasets we have comparable or better generalization.</description><subject>Approximation</subject><subject>Optimization</subject><subject>Shampoos</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjN8KgjAchUcQJOU7DLoW5qZl3Un2B7woqNuQMVf9LDfbJkRPn0kP0NU5nO_jDJBHGQuDJKJ0hHxrK0IInc1pHDMPnXOTZvxqeLnEudFKirs0OG0ao19QcwdaBZmuQfUVbzsRpHL4YKTQqoTvKkt8dFrcuHUg8L5xUMO79ydoeOEPK_1fjtF0sz6tdkF3_2yldUWlW6M6VNCEhtGCsZiw_6wPcNBEtg</recordid><startdate>20230530</startdate><enddate>20230530</enddate><creator>Mei, Jonathan</creator><creator>Moreno, Alexander</creator><creator>Walters, Luke</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230530</creationdate><title>KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization</title><author>Mei, Jonathan ; Moreno, Alexander ; Walters, Luke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28214933503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Optimization</topic><topic>Shampoos</topic><toplevel>online_resources</toplevel><creatorcontrib>Mei, Jonathan</creatorcontrib><creatorcontrib>Moreno, Alexander</creatorcontrib><creatorcontrib>Walters, Luke</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Jonathan</au><au>Moreno, Alexander</au><au>Walters, Luke</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization</atitle><jtitle>arXiv.org</jtitle><date>2023-05-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Second order stochastic optimizers allow parameter update step size and direction to adapt to loss curvature, but have traditionally required too much memory and compute for deep learning. Recently, Shampoo [Gupta et al., 2018] introduced a Kronecker factored preconditioner to reduce these requirements: it is used for large deep models [Anil et al., 2020] and in production [Anil et al., 2022]. However, it takes inverse matrix roots of ill-conditioned matrices. This requires 64-bit precision, imposing strong hardware constraints. In this paper, we propose a novel factorization, Kronecker Approximation-Domination (KrAD). Using KrAD, we update a matrix that directly approximates the inverse empirical Fisher matrix (like full matrix AdaGrad), avoiding inversion and hence 64-bit precision. We then propose KrADagrad\(^\star\), with similar computational costs to Shampoo and the same regret. Synthetic ill-conditioned experiments show improved performance over Shampoo for 32-bit precision, while for several real datasets we have comparable or better generalization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2821493350
source Publicly Available Content Database
subjects Approximation
Optimization
Shampoos
title KrADagrad: Kronecker Approximation-Domination Gradient Preconditioned Stochastic Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KrADagrad:%20Kronecker%20Approximation-Domination%20Gradient%20Preconditioned%20Stochastic%20Optimization&rft.jtitle=arXiv.org&rft.au=Mei,%20Jonathan&rft.date=2023-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2821493350%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28214933503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821493350&rft_id=info:pmid/&rfr_iscdi=true