Loading…
Engine misfire fault diagnosis based on SC–ANFIS
Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clu...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2023-06, Vol.44 (6), p.10045-10066 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3 |
container_end_page | 10066 |
container_issue | 6 |
container_start_page | 10045 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 44 |
creator | Zhu, Sheng Tan, Min Keng Lim, Kit Guan Chin, Renee Ka Yin Chua, Bih Lii Teo, Kenneth Tze Kin |
description | Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability. |
doi_str_mv | 10.3233/JIFS-224059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821700952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821700952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8QORGJHh-dmOk7GqWgiqYCjMlpM8V6napNjJwMY_8Id8Ca3CdO9wdK90GLsV8CBRyseXYrnmiAp0fsYmIjOaZ3lqzo8dUsUFqvSSXcW4BRBGI0wYLtpN01Kyb6JvAiXeDbs-qRu3abvYxKR0keqka5P1_Pf7Z_a6LNbX7MK7XaSb_5yyj-Xiff7MV29PxXy24hWmoucea2dIkwQyla59SQqlIEkZGFWVlXSCIAcnhKxy5aXMkLR2oGrA0iiSU3Y37h5C9zlQ7O22G0J7vLSYoTAAucYjdT9SVehiDOTtITR7F76sAHuSYk9S7ChF_gE66VMO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821700952</pqid></control><display><type>article</type><title>Engine misfire fault diagnosis based on SC–ANFIS</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><creator>Zhu, Sheng ; Tan, Min Keng ; Lim, Kit Guan ; Chin, Renee Ka Yin ; Chua, Bih Lii ; Teo, Kenneth Tze Kin</creator><creatorcontrib>Zhu, Sheng ; Tan, Min Keng ; Lim, Kit Guan ; Chin, Renee Ka Yin ; Chua, Bih Lii ; Teo, Kenneth Tze Kin</creatorcontrib><description>Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-224059</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Back propagation ; Clustering ; Data collection ; Engine cylinders ; Engine failure ; Exhaust gases ; Fault diagnosis ; Faults ; Fuzzy logic ; Gasoline engines ; Inference ; Parameters</subject><ispartof>Journal of intelligent & fuzzy systems, 2023-06, Vol.44 (6), p.10045-10066</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</citedby><cites>FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Sheng</creatorcontrib><creatorcontrib>Tan, Min Keng</creatorcontrib><creatorcontrib>Lim, Kit Guan</creatorcontrib><creatorcontrib>Chin, Renee Ka Yin</creatorcontrib><creatorcontrib>Chua, Bih Lii</creatorcontrib><creatorcontrib>Teo, Kenneth Tze Kin</creatorcontrib><title>Engine misfire fault diagnosis based on SC–ANFIS</title><title>Journal of intelligent & fuzzy systems</title><description>Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Clustering</subject><subject>Data collection</subject><subject>Engine cylinders</subject><subject>Engine failure</subject><subject>Exhaust gases</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Fuzzy logic</subject><subject>Gasoline engines</subject><subject>Inference</subject><subject>Parameters</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8QORGJHh-dmOk7GqWgiqYCjMlpM8V6napNjJwMY_8Id8Ca3CdO9wdK90GLsV8CBRyseXYrnmiAp0fsYmIjOaZ3lqzo8dUsUFqvSSXcW4BRBGI0wYLtpN01Kyb6JvAiXeDbs-qRu3abvYxKR0keqka5P1_Pf7Z_a6LNbX7MK7XaSb_5yyj-Xiff7MV29PxXy24hWmoucea2dIkwQyla59SQqlIEkZGFWVlXSCIAcnhKxy5aXMkLR2oGrA0iiSU3Y37h5C9zlQ7O22G0J7vLSYoTAAucYjdT9SVehiDOTtITR7F76sAHuSYk9S7ChF_gE66VMO</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhu, Sheng</creator><creator>Tan, Min Keng</creator><creator>Lim, Kit Guan</creator><creator>Chin, Renee Ka Yin</creator><creator>Chua, Bih Lii</creator><creator>Teo, Kenneth Tze Kin</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>Engine misfire fault diagnosis based on SC–ANFIS</title><author>Zhu, Sheng ; Tan, Min Keng ; Lim, Kit Guan ; Chin, Renee Ka Yin ; Chua, Bih Lii ; Teo, Kenneth Tze Kin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Clustering</topic><topic>Data collection</topic><topic>Engine cylinders</topic><topic>Engine failure</topic><topic>Exhaust gases</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Fuzzy logic</topic><topic>Gasoline engines</topic><topic>Inference</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Sheng</creatorcontrib><creatorcontrib>Tan, Min Keng</creatorcontrib><creatorcontrib>Lim, Kit Guan</creatorcontrib><creatorcontrib>Chin, Renee Ka Yin</creatorcontrib><creatorcontrib>Chua, Bih Lii</creatorcontrib><creatorcontrib>Teo, Kenneth Tze Kin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Sheng</au><au>Tan, Min Keng</au><au>Lim, Kit Guan</au><au>Chin, Renee Ka Yin</au><au>Chua, Bih Lii</au><au>Teo, Kenneth Tze Kin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engine misfire fault diagnosis based on SC–ANFIS</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>10045</spage><epage>10066</epage><pages>10045-10066</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-224059</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2023-06, Vol.44 (6), p.10045-10066 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2821700952 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】 |
subjects | Adaptive systems Algorithms Artificial neural networks Back propagation Clustering Data collection Engine cylinders Engine failure Exhaust gases Fault diagnosis Faults Fuzzy logic Gasoline engines Inference Parameters |
title | Engine misfire fault diagnosis based on SC–ANFIS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engine%20misfire%20fault%20diagnosis%20based%20on%20SC%E2%80%93ANFIS&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zhu,%20Sheng&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.spage=10045&rft.epage=10066&rft.pages=10045-10066&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-224059&rft_dat=%3Cproquest_cross%3E2821700952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821700952&rft_id=info:pmid/&rfr_iscdi=true |