Loading…

Engine misfire fault diagnosis based on SC–ANFIS

Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2023-06, Vol.44 (6), p.10045-10066
Main Authors: Zhu, Sheng, Tan, Min Keng, Lim, Kit Guan, Chin, Renee Ka Yin, Chua, Bih Lii, Teo, Kenneth Tze Kin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3
cites cdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3
container_end_page 10066
container_issue 6
container_start_page 10045
container_title Journal of intelligent & fuzzy systems
container_volume 44
creator Zhu, Sheng
Tan, Min Keng
Lim, Kit Guan
Chin, Renee Ka Yin
Chua, Bih Lii
Teo, Kenneth Tze Kin
description Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.
doi_str_mv 10.3233/JIFS-224059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821700952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821700952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8QORGJHh-dmOk7GqWgiqYCjMlpM8V6napNjJwMY_8Id8Ca3CdO9wdK90GLsV8CBRyseXYrnmiAp0fsYmIjOaZ3lqzo8dUsUFqvSSXcW4BRBGI0wYLtpN01Kyb6JvAiXeDbs-qRu3abvYxKR0keqka5P1_Pf7Z_a6LNbX7MK7XaSb_5yyj-Xiff7MV29PxXy24hWmoucea2dIkwQyla59SQqlIEkZGFWVlXSCIAcnhKxy5aXMkLR2oGrA0iiSU3Y37h5C9zlQ7O22G0J7vLSYoTAAucYjdT9SVehiDOTtITR7F76sAHuSYk9S7ChF_gE66VMO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821700952</pqid></control><display><type>article</type><title>Engine misfire fault diagnosis based on SC–ANFIS</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><creator>Zhu, Sheng ; Tan, Min Keng ; Lim, Kit Guan ; Chin, Renee Ka Yin ; Chua, Bih Lii ; Teo, Kenneth Tze Kin</creator><creatorcontrib>Zhu, Sheng ; Tan, Min Keng ; Lim, Kit Guan ; Chin, Renee Ka Yin ; Chua, Bih Lii ; Teo, Kenneth Tze Kin</creatorcontrib><description>Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-224059</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Adaptive systems ; Algorithms ; Artificial neural networks ; Back propagation ; Clustering ; Data collection ; Engine cylinders ; Engine failure ; Exhaust gases ; Fault diagnosis ; Faults ; Fuzzy logic ; Gasoline engines ; Inference ; Parameters</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2023-06, Vol.44 (6), p.10045-10066</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</citedby><cites>FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Sheng</creatorcontrib><creatorcontrib>Tan, Min Keng</creatorcontrib><creatorcontrib>Lim, Kit Guan</creatorcontrib><creatorcontrib>Chin, Renee Ka Yin</creatorcontrib><creatorcontrib>Chua, Bih Lii</creatorcontrib><creatorcontrib>Teo, Kenneth Tze Kin</creatorcontrib><title>Engine misfire fault diagnosis based on SC–ANFIS</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Clustering</subject><subject>Data collection</subject><subject>Engine cylinders</subject><subject>Engine failure</subject><subject>Exhaust gases</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Fuzzy logic</subject><subject>Gasoline engines</subject><subject>Inference</subject><subject>Parameters</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8QORGJHh-dmOk7GqWgiqYCjMlpM8V6napNjJwMY_8Id8Ca3CdO9wdK90GLsV8CBRyseXYrnmiAp0fsYmIjOaZ3lqzo8dUsUFqvSSXcW4BRBGI0wYLtpN01Kyb6JvAiXeDbs-qRu3abvYxKR0keqka5P1_Pf7Z_a6LNbX7MK7XaSb_5yyj-Xiff7MV29PxXy24hWmoucea2dIkwQyla59SQqlIEkZGFWVlXSCIAcnhKxy5aXMkLR2oGrA0iiSU3Y37h5C9zlQ7O22G0J7vLSYoTAAucYjdT9SVehiDOTtITR7F76sAHuSYk9S7ChF_gE66VMO</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhu, Sheng</creator><creator>Tan, Min Keng</creator><creator>Lim, Kit Guan</creator><creator>Chin, Renee Ka Yin</creator><creator>Chua, Bih Lii</creator><creator>Teo, Kenneth Tze Kin</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230601</creationdate><title>Engine misfire fault diagnosis based on SC–ANFIS</title><author>Zhu, Sheng ; Tan, Min Keng ; Lim, Kit Guan ; Chin, Renee Ka Yin ; Chua, Bih Lii ; Teo, Kenneth Tze Kin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Clustering</topic><topic>Data collection</topic><topic>Engine cylinders</topic><topic>Engine failure</topic><topic>Exhaust gases</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Fuzzy logic</topic><topic>Gasoline engines</topic><topic>Inference</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Sheng</creatorcontrib><creatorcontrib>Tan, Min Keng</creatorcontrib><creatorcontrib>Lim, Kit Guan</creatorcontrib><creatorcontrib>Chin, Renee Ka Yin</creatorcontrib><creatorcontrib>Chua, Bih Lii</creatorcontrib><creatorcontrib>Teo, Kenneth Tze Kin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Sheng</au><au>Tan, Min Keng</au><au>Lim, Kit Guan</au><au>Chin, Renee Ka Yin</au><au>Chua, Bih Lii</au><au>Teo, Kenneth Tze Kin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engine misfire fault diagnosis based on SC–ANFIS</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>44</volume><issue>6</issue><spage>10045</spage><epage>10066</epage><pages>10045-10066</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Misfire fault is a common engine failure which is caused by incomplete combustion in the engine cylinders. Conventionally, the misfire fault is diagnosed manually by mechanics, but the diagnosis process is time-consuming. Therefore, this study aims to explore the feasibility of using Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System (SC-ANFIS) algorithm to assist in diagnosing misfire faults. The Subtractive Clustering (SC) approach initializes the parameters of Adaptive Neuro-Fuzzy Inference System (ANFIS), whereas Back Propagation (BP) and Least Square Estimation (LSE) approaches are implemented to optimize the ANFIS parameters. The proposed algorithm will pre-diagnose the cause of misfire faults based on the engine exhaust gas. In this work, exhaust gases for different causes of misfire faults are collected from Volkswagen 1.8TSI 4-cylinder petrol engine. These collected data are used to train the proposed algorithm. The performances of the proposed algorithm are compared to two commonly used algorithms, namely Fuzzy C-Mean Clustering based ANFIS (FCM-ANFIS) and BP algorithms. The simulation results show the proposed algorithm has improved 2.4% to 5.5% averagely in terms of accuracy, efficiency and stability.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-224059</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2023-06, Vol.44 (6), p.10045-10066
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2821700952
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】
subjects Adaptive systems
Algorithms
Artificial neural networks
Back propagation
Clustering
Data collection
Engine cylinders
Engine failure
Exhaust gases
Fault diagnosis
Faults
Fuzzy logic
Gasoline engines
Inference
Parameters
title Engine misfire fault diagnosis based on SC–ANFIS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engine%20misfire%20fault%20diagnosis%20based%20on%20SC%E2%80%93ANFIS&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Zhu,%20Sheng&rft.date=2023-06-01&rft.volume=44&rft.issue=6&rft.spage=10045&rft.epage=10066&rft.pages=10045-10066&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-224059&rft_dat=%3Cproquest_cross%3E2821700952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-f2da7e5e30e7c5dfbe4231e3e8074cbc3a1e090a113c94f3382e55a04d02b74e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821700952&rft_id=info:pmid/&rfr_iscdi=true