Loading…

Photo excitation of silver ions during the synthesis of silver nanoparticles modify physiological, chemical, and biological properties

Physio-chemical environment changes the morphological and biochemical properties of nanoparticles. The study was aimed to find the change in biological properties of silver nanoparticles synthesized under visible photon flux. The NPs were characterized for antioxidative, antimicrobial, enzyme inhibi...

Full description

Saved in:
Bibliographic Details
Published in:Particulate science and technology 2023-07, Vol.41 (5), p.600-610
Main Authors: Sajjad, Anila, Bhatti, Sajjad Hussain, Zia, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Physio-chemical environment changes the morphological and biochemical properties of nanoparticles. The study was aimed to find the change in biological properties of silver nanoparticles synthesized under visible photon flux. The NPs were characterized for antioxidative, antimicrobial, enzyme inhibition, and nanozyme properties. The use of low-intensity LEDs as excitation sources lead to greater versatility in the formation of well-defined SNPs. XRD spectra exhibited the purity and face-centered cubic crystal structures of SNPs and the sizes are within 16-25 nm. SEM images revealed spherical, elliptical, and rod shapes of SNPs. Remarkable activities were observed by daylight SNPs in free radical scavenging potential (49.41 ± 0.29%), total antioxidant activity (65.71 ± 0.89 µg AAE/mg), and metal chelating (48.90 ± 0.24%) while the strongest activity was found by green light SNPs in total reducing power and ABTS assays. Daylight SNPs showed significant alpha-amylase (71.7 ± 0.73%), urease inhibition (89.3 ± 0.66%) activities while dark SNPs were significant in inhibition of lipase (89.8 ± 0.44%). The intrinsic peroxidase-like activity of photo-excited SNPs as nanozyme was also noteworthy. Significant antibacterial activity was shown by daylight and blue light SNPs against MRSA and P. aeruginosa. This study represents a significant step by employing low-intensity LED lights for the synthesis of silver nanoparticles and extends a great prospect in different fields.
ISSN:0272-6351
1548-0046
DOI:10.1080/02726351.2022.2126340