Loading…
Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers
Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box b...
Saved in:
Published in: | Applied composite materials 2023-06, Vol.30 (3), p.705-726 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3 |
container_end_page | 726 |
container_issue | 3 |
container_start_page | 705 |
container_title | Applied composite materials |
container_volume | 30 |
creator | Valente, G. Ghasemnejad, H. Srimanosaowapak, S. Watson, J. W. |
description | Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application. |
doi_str_mv | 10.1007/s10443-023-10116-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822561673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822561673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhonRxDn9A55IPKNQaKHHZjo1WeJlBy-GAIXJ0sKE1WX_3mpNvHn6Lu_75P0eAK4JviUY87tMMGMU4YIiggmp0OEEzEjJKWKi5qdghuuiRkTUr-fgIuctxljwis_AW9N-qmBsb8Me-gDvbfabAFVo4VL5bkgWNkF1x-wzjA423dD74IceLqPqkfNdZ1v4FIM9mthruEgqv8NG55i0TfkSnDnVZXv1e-dgvXxYL57Q6uXxedGskKEV3SMtjNKiKLChFpetY462zhAmWMWsVgIrJWomNOam1kyNb5WqKLUVilPhDJ2Dmwm7S_FjsHkvt3FI4-wsixFbVqTidEwVU8qkmHOyTu6S71U6SoLlt0U5WZSjRfljUR7GEp1KeQyHjU1_6H9aX-vjdkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822561673</pqid></control><display><type>article</type><title>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</title><source>Springer Nature</source><creator>Valente, G. ; Ghasemnejad, H. ; Srimanosaowapak, S. ; Watson, J. W.</creator><creatorcontrib>Valente, G. ; Ghasemnejad, H. ; Srimanosaowapak, S. ; Watson, J. W.</creatorcontrib><description>Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-023-10116-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace industry ; Aluminum ; Bumpers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crashworthiness ; Densification ; Energy absorption ; Failure analysis ; Finite element method ; Honeycomb structures ; Impact strength ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical models ; Metal foams ; Open cell porosity ; Optimization ; Polymer Sciences ; Weight reduction</subject><ispartof>Applied composite materials, 2023-06, Vol.30 (3), p.705-726</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</citedby><cites>FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</cites><orcidid>0000-0003-2912-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Valente, G.</creatorcontrib><creatorcontrib>Ghasemnejad, H.</creatorcontrib><creatorcontrib>Srimanosaowapak, S.</creatorcontrib><creatorcontrib>Watson, J. W.</creatorcontrib><title>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.</description><subject>Aerospace industry</subject><subject>Aluminum</subject><subject>Bumpers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crashworthiness</subject><subject>Densification</subject><subject>Energy absorption</subject><subject>Failure analysis</subject><subject>Finite element method</subject><subject>Honeycomb structures</subject><subject>Impact strength</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metal foams</subject><subject>Open cell porosity</subject><subject>Optimization</subject><subject>Polymer Sciences</subject><subject>Weight reduction</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwyAYhonRxDn9A55IPKNQaKHHZjo1WeJlBy-GAIXJ0sKE1WX_3mpNvHn6Lu_75P0eAK4JviUY87tMMGMU4YIiggmp0OEEzEjJKWKi5qdghuuiRkTUr-fgIuctxljwis_AW9N-qmBsb8Me-gDvbfabAFVo4VL5bkgWNkF1x-wzjA423dD74IceLqPqkfNdZ1v4FIM9mthruEgqv8NG55i0TfkSnDnVZXv1e-dgvXxYL57Q6uXxedGskKEV3SMtjNKiKLChFpetY462zhAmWMWsVgIrJWomNOam1kyNb5WqKLUVilPhDJ2Dmwm7S_FjsHkvt3FI4-wsixFbVqTidEwVU8qkmHOyTu6S71U6SoLlt0U5WZSjRfljUR7GEp1KeQyHjU1_6H9aX-vjdkY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Valente, G.</creator><creator>Ghasemnejad, H.</creator><creator>Srimanosaowapak, S.</creator><creator>Watson, J. W.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2912-8123</orcidid></search><sort><creationdate>20230601</creationdate><title>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</title><author>Valente, G. ; Ghasemnejad, H. ; Srimanosaowapak, S. ; Watson, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace industry</topic><topic>Aluminum</topic><topic>Bumpers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crashworthiness</topic><topic>Densification</topic><topic>Energy absorption</topic><topic>Failure analysis</topic><topic>Finite element method</topic><topic>Honeycomb structures</topic><topic>Impact strength</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metal foams</topic><topic>Open cell porosity</topic><topic>Optimization</topic><topic>Polymer Sciences</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valente, G.</creatorcontrib><creatorcontrib>Ghasemnejad, H.</creatorcontrib><creatorcontrib>Srimanosaowapak, S.</creatorcontrib><creatorcontrib>Watson, J. W.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valente, G.</au><au>Ghasemnejad, H.</au><au>Srimanosaowapak, S.</au><au>Watson, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>30</volume><issue>3</issue><spage>705</spage><epage>726</epage><pages>705-726</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-023-10116-w</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2912-8123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-189X |
ispartof | Applied composite materials, 2023-06, Vol.30 (3), p.705-726 |
issn | 0929-189X 1573-4897 |
language | eng |
recordid | cdi_proquest_journals_2822561673 |
source | Springer Nature |
subjects | Aerospace industry Aluminum Bumpers Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crashworthiness Densification Energy absorption Failure analysis Finite element method Honeycomb structures Impact strength Industrial Chemistry/Chemical Engineering Materials Science Mathematical models Metal foams Open cell porosity Optimization Polymer Sciences Weight reduction |
title | Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancement%20in%20Design%20and%20Failure%20Analysis%20of%20Aluminium%20Foam-filled%20Honeycomb%20Crash%20Absorbers&rft.jtitle=Applied%20composite%20materials&rft.au=Valente,%20G.&rft.date=2023-06-01&rft.volume=30&rft.issue=3&rft.spage=705&rft.epage=726&rft.pages=705-726&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-023-10116-w&rft_dat=%3Cproquest_cross%3E2822561673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822561673&rft_id=info:pmid/&rfr_iscdi=true |