Loading…

Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers

Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box b...

Full description

Saved in:
Bibliographic Details
Published in:Applied composite materials 2023-06, Vol.30 (3), p.705-726
Main Authors: Valente, G., Ghasemnejad, H., Srimanosaowapak, S., Watson, J. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3
cites cdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3
container_end_page 726
container_issue 3
container_start_page 705
container_title Applied composite materials
container_volume 30
creator Valente, G.
Ghasemnejad, H.
Srimanosaowapak, S.
Watson, J. W.
description Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.
doi_str_mv 10.1007/s10443-023-10116-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822561673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822561673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhonRxDn9A55IPKNQaKHHZjo1WeJlBy-GAIXJ0sKE1WX_3mpNvHn6Lu_75P0eAK4JviUY87tMMGMU4YIiggmp0OEEzEjJKWKi5qdghuuiRkTUr-fgIuctxljwis_AW9N-qmBsb8Me-gDvbfabAFVo4VL5bkgWNkF1x-wzjA423dD74IceLqPqkfNdZ1v4FIM9mthruEgqv8NG55i0TfkSnDnVZXv1e-dgvXxYL57Q6uXxedGskKEV3SMtjNKiKLChFpetY462zhAmWMWsVgIrJWomNOam1kyNb5WqKLUVilPhDJ2Dmwm7S_FjsHkvt3FI4-wsixFbVqTidEwVU8qkmHOyTu6S71U6SoLlt0U5WZSjRfljUR7GEp1KeQyHjU1_6H9aX-vjdkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822561673</pqid></control><display><type>article</type><title>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</title><source>Springer Nature</source><creator>Valente, G. ; Ghasemnejad, H. ; Srimanosaowapak, S. ; Watson, J. W.</creator><creatorcontrib>Valente, G. ; Ghasemnejad, H. ; Srimanosaowapak, S. ; Watson, J. W.</creatorcontrib><description>Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-023-10116-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace industry ; Aluminum ; Bumpers ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crashworthiness ; Densification ; Energy absorption ; Failure analysis ; Finite element method ; Honeycomb structures ; Impact strength ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical models ; Metal foams ; Open cell porosity ; Optimization ; Polymer Sciences ; Weight reduction</subject><ispartof>Applied composite materials, 2023-06, Vol.30 (3), p.705-726</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</citedby><cites>FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</cites><orcidid>0000-0003-2912-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Valente, G.</creatorcontrib><creatorcontrib>Ghasemnejad, H.</creatorcontrib><creatorcontrib>Srimanosaowapak, S.</creatorcontrib><creatorcontrib>Watson, J. W.</creatorcontrib><title>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.</description><subject>Aerospace industry</subject><subject>Aluminum</subject><subject>Bumpers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crashworthiness</subject><subject>Densification</subject><subject>Energy absorption</subject><subject>Failure analysis</subject><subject>Finite element method</subject><subject>Honeycomb structures</subject><subject>Impact strength</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metal foams</subject><subject>Open cell porosity</subject><subject>Optimization</subject><subject>Polymer Sciences</subject><subject>Weight reduction</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwyAYhonRxDn9A55IPKNQaKHHZjo1WeJlBy-GAIXJ0sKE1WX_3mpNvHn6Lu_75P0eAK4JviUY87tMMGMU4YIiggmp0OEEzEjJKWKi5qdghuuiRkTUr-fgIuctxljwis_AW9N-qmBsb8Me-gDvbfabAFVo4VL5bkgWNkF1x-wzjA423dD74IceLqPqkfNdZ1v4FIM9mthruEgqv8NG55i0TfkSnDnVZXv1e-dgvXxYL57Q6uXxedGskKEV3SMtjNKiKLChFpetY462zhAmWMWsVgIrJWomNOam1kyNb5WqKLUVilPhDJ2Dmwm7S_FjsHkvt3FI4-wsixFbVqTidEwVU8qkmHOyTu6S71U6SoLlt0U5WZSjRfljUR7GEp1KeQyHjU1_6H9aX-vjdkY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Valente, G.</creator><creator>Ghasemnejad, H.</creator><creator>Srimanosaowapak, S.</creator><creator>Watson, J. W.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2912-8123</orcidid></search><sort><creationdate>20230601</creationdate><title>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</title><author>Valente, G. ; Ghasemnejad, H. ; Srimanosaowapak, S. ; Watson, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace industry</topic><topic>Aluminum</topic><topic>Bumpers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crashworthiness</topic><topic>Densification</topic><topic>Energy absorption</topic><topic>Failure analysis</topic><topic>Finite element method</topic><topic>Honeycomb structures</topic><topic>Impact strength</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metal foams</topic><topic>Open cell porosity</topic><topic>Optimization</topic><topic>Polymer Sciences</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valente, G.</creatorcontrib><creatorcontrib>Ghasemnejad, H.</creatorcontrib><creatorcontrib>Srimanosaowapak, S.</creatorcontrib><creatorcontrib>Watson, J. W.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valente, G.</au><au>Ghasemnejad, H.</au><au>Srimanosaowapak, S.</au><au>Watson, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>30</volume><issue>3</issue><spage>705</spage><epage>726</epage><pages>705-726</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>Honeycomb structures are frequently used as energy absorption devices in the automotive and aerospace industry. Many studies have been conducted to optimise these structures and improve crashworthiness behaviour. This paper attempts to improve the crashworthiness behaviour of a honeycomb crash box by filling the cells with open-cell aluminium foams. Experimental tests were conducted to develop the honeycomb and aluminium foam material model and, also, to validate the finite element model by experimental data. The finite element model was developed in ABAQUS, and different variables were parameterised to aim a quick implementation. The empty aluminium honeycomb crash box is used as a term of comparison with the foam-filled ones. Foam-filling the crash box allows the control of the densification zone for different impact energies using open-cell aluminium foam, which shows the main novelty of this research. In the end, the optimised structure is presented concerning the optimum number of foam-filled cells and, also, to the aluminium foam’s density that best fits this application.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-023-10116-w</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2912-8123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0929-189X
ispartof Applied composite materials, 2023-06, Vol.30 (3), p.705-726
issn 0929-189X
1573-4897
language eng
recordid cdi_proquest_journals_2822561673
source Springer Nature
subjects Aerospace industry
Aluminum
Bumpers
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crashworthiness
Densification
Energy absorption
Failure analysis
Finite element method
Honeycomb structures
Impact strength
Industrial Chemistry/Chemical Engineering
Materials Science
Mathematical models
Metal foams
Open cell porosity
Optimization
Polymer Sciences
Weight reduction
title Advancement in Design and Failure Analysis of Aluminium Foam-filled Honeycomb Crash Absorbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancement%20in%20Design%20and%20Failure%20Analysis%20of%20Aluminium%20Foam-filled%20Honeycomb%20Crash%20Absorbers&rft.jtitle=Applied%20composite%20materials&rft.au=Valente,%20G.&rft.date=2023-06-01&rft.volume=30&rft.issue=3&rft.spage=705&rft.epage=726&rft.pages=705-726&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-023-10116-w&rft_dat=%3Cproquest_cross%3E2822561673%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-b8cab8220c3e05df4f3dfc148464eba80aa8948b07c9b4a5735a25be8a738fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822561673&rft_id=info:pmid/&rfr_iscdi=true