Loading…
A Unified Comparison of IRT‐Based Effect Sizes for DIF Investigations
Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in t...
Saved in:
Published in: | Journal of educational measurement 2023-06, Vol.60 (2), p.318-350 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983 |
---|---|
cites | cdi_FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983 |
container_end_page | 350 |
container_issue | 2 |
container_start_page | 318 |
container_title | Journal of educational measurement |
container_volume | 60 |
creator | Chalmers, R. Philip |
description | Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in the sample statistics (SIDS, UIDS, NSIDS, and NUIDS), the standardized indices of impact, and the differential response functioning (DRF) statistics. However, the relationship between these proposed statistics has not been fully discussed, particularly with respect to population parameter definitions and recovery performance across independent samples. To address these issues, this article provides a unified presentation of competing DIF ES definitions and estimators, and evaluates the recovery efficacy of these competing estimators using a set of Monte Carlo simulation experiments. Statistical and inferential properties of the estimators are discussed, as well as future areas of research in this model‐based area of bias quantification. |
doi_str_mv | 10.1111/jedm.12347 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822697120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1380024</ericid><sourcerecordid>2822697120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsb90LAnTA1P5NJZlnbaZ2iCNquQzqTSEo7qUmr1JWP4DP6JKaOuPRu7uI7fPdyADjHqIfjXC90vephQlN-ADqYpyyhuUgPQQchQhKUMXYMTkJYIIQZZ7gDxn04a6yxuoYDt1orb4NroDOwfJx-fXzeqBCTwhhdbeCTfdcBGufhsBzBsnnVYWOf1ca6JpyCI6OWQZ_97i6YjYrp4Da5exiXg_5dUlFCecI0zQ1LcV1lWc0IQikyc5PFfqHz2ug5p5nQCinFaCV4KrQxOa8ZFxnmdS5oF1y2vWvvXrbxAblwW9_Ek5IIQrKcY4IiddVSlXcheG3k2tuV8juJkdyLkntR8kdUhC9aWHtb_YHFBFMRraUxx23-Zpd690-TnBTD-7bzGzDjc58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822697120</pqid></control><display><type>article</type><title>A Unified Comparison of IRT‐Based Effect Sizes for DIF Investigations</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Wiley</source><source>ERIC</source><creator>Chalmers, R. Philip</creator><creatorcontrib>Chalmers, R. Philip</creatorcontrib><description>Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in the sample statistics (SIDS, UIDS, NSIDS, and NUIDS), the standardized indices of impact, and the differential response functioning (DRF) statistics. However, the relationship between these proposed statistics has not been fully discussed, particularly with respect to population parameter definitions and recovery performance across independent samples. To address these issues, this article provides a unified presentation of competing DIF ES definitions and estimators, and evaluates the recovery efficacy of these competing estimators using a set of Monte Carlo simulation experiments. Statistical and inferential properties of the estimators are discussed, as well as future areas of research in this model‐based area of bias quantification.</description><identifier>ISSN: 0022-0655</identifier><identifier>EISSN: 1745-3984</identifier><identifier>DOI: 10.1111/jedm.12347</identifier><language>eng</language><publisher>Madison: Wiley</publisher><subject>Definitions ; Educational tests & measurements ; Efficacy ; Inferences ; Item Response Theory ; Monte Carlo Methods ; Monte Carlo simulation ; Recovery ; Simulation ; Statistical Analysis ; Test Bias</subject><ispartof>Journal of educational measurement, 2023-06, Vol.60 (2), p.318-350</ispartof><rights>2022 by the National Council on Measurement in Education.</rights><rights>2023 by the National Council on Measurement in Education.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983</citedby><cites>FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983</cites><orcidid>0000-0001-5332-2810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,30999</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1380024$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Chalmers, R. Philip</creatorcontrib><title>A Unified Comparison of IRT‐Based Effect Sizes for DIF Investigations</title><title>Journal of educational measurement</title><description>Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in the sample statistics (SIDS, UIDS, NSIDS, and NUIDS), the standardized indices of impact, and the differential response functioning (DRF) statistics. However, the relationship between these proposed statistics has not been fully discussed, particularly with respect to population parameter definitions and recovery performance across independent samples. To address these issues, this article provides a unified presentation of competing DIF ES definitions and estimators, and evaluates the recovery efficacy of these competing estimators using a set of Monte Carlo simulation experiments. Statistical and inferential properties of the estimators are discussed, as well as future areas of research in this model‐based area of bias quantification.</description><subject>Definitions</subject><subject>Educational tests & measurements</subject><subject>Efficacy</subject><subject>Inferences</subject><subject>Item Response Theory</subject><subject>Monte Carlo Methods</subject><subject>Monte Carlo simulation</subject><subject>Recovery</subject><subject>Simulation</subject><subject>Statistical Analysis</subject><subject>Test Bias</subject><issn>0022-0655</issn><issn>1745-3984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>7QJ</sourceid><recordid>eNp9kM1KAzEURoMoWKsb90LAnTA1P5NJZlnbaZ2iCNquQzqTSEo7qUmr1JWP4DP6JKaOuPRu7uI7fPdyADjHqIfjXC90vephQlN-ADqYpyyhuUgPQQchQhKUMXYMTkJYIIQZZ7gDxn04a6yxuoYDt1orb4NroDOwfJx-fXzeqBCTwhhdbeCTfdcBGufhsBzBsnnVYWOf1ca6JpyCI6OWQZ_97i6YjYrp4Da5exiXg_5dUlFCecI0zQ1LcV1lWc0IQikyc5PFfqHz2ug5p5nQCinFaCV4KrQxOa8ZFxnmdS5oF1y2vWvvXrbxAblwW9_Ek5IIQrKcY4IiddVSlXcheG3k2tuV8juJkdyLkntR8kdUhC9aWHtb_YHFBFMRraUxx23-Zpd690-TnBTD-7bzGzDjc58</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chalmers, R. Philip</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><orcidid>https://orcid.org/0000-0001-5332-2810</orcidid></search><sort><creationdate>20230601</creationdate><title>A Unified Comparison of IRT‐Based Effect Sizes for DIF Investigations</title><author>Chalmers, R. Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Definitions</topic><topic>Educational tests & measurements</topic><topic>Efficacy</topic><topic>Inferences</topic><topic>Item Response Theory</topic><topic>Monte Carlo Methods</topic><topic>Monte Carlo simulation</topic><topic>Recovery</topic><topic>Simulation</topic><topic>Statistical Analysis</topic><topic>Test Bias</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chalmers, R. Philip</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><jtitle>Journal of educational measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chalmers, R. Philip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1380024</ericid><atitle>A Unified Comparison of IRT‐Based Effect Sizes for DIF Investigations</atitle><jtitle>Journal of educational measurement</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>60</volume><issue>2</issue><spage>318</spage><epage>350</epage><pages>318-350</pages><issn>0022-0655</issn><eissn>1745-3984</eissn><abstract>Several marginal effect size (ES) statistics suitable for quantifying the magnitude of differential item functioning (DIF) have been proposed in the area of item response theory; for instance, the Differential Functioning of Items and Tests (DFIT) statistics, signed and unsigned item difference in the sample statistics (SIDS, UIDS, NSIDS, and NUIDS), the standardized indices of impact, and the differential response functioning (DRF) statistics. However, the relationship between these proposed statistics has not been fully discussed, particularly with respect to population parameter definitions and recovery performance across independent samples. To address these issues, this article provides a unified presentation of competing DIF ES definitions and estimators, and evaluates the recovery efficacy of these competing estimators using a set of Monte Carlo simulation experiments. Statistical and inferential properties of the estimators are discussed, as well as future areas of research in this model‐based area of bias quantification.</abstract><cop>Madison</cop><pub>Wiley</pub><doi>10.1111/jedm.12347</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0001-5332-2810</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0655 |
ispartof | Journal of educational measurement, 2023-06, Vol.60 (2), p.318-350 |
issn | 0022-0655 1745-3984 |
language | eng |
recordid | cdi_proquest_journals_2822697120 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Wiley; ERIC |
subjects | Definitions Educational tests & measurements Efficacy Inferences Item Response Theory Monte Carlo Methods Monte Carlo simulation Recovery Simulation Statistical Analysis Test Bias |
title | A Unified Comparison of IRT‐Based Effect Sizes for DIF Investigations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Comparison%20of%20IRT%E2%80%90Based%20Effect%20Sizes%20for%20DIF%20Investigations&rft.jtitle=Journal%20of%20educational%20measurement&rft.au=Chalmers,%20R.%20Philip&rft.date=2023-06-01&rft.volume=60&rft.issue=2&rft.spage=318&rft.epage=350&rft.pages=318-350&rft.issn=0022-0655&rft.eissn=1745-3984&rft_id=info:doi/10.1111/jedm.12347&rft_dat=%3Cproquest_cross%3E2822697120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3237-5e39f541dc66d520040fbf6ffe8e9dfeb7368ea0aa53c8748eff97d578617d983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2822697120&rft_id=info:pmid/&rft_ericid=EJ1380024&rfr_iscdi=true |